Path: Top -> Journal -> Telkomnika -> 2015 -> Vol 13, No 2: June

An Image Compression Method Based on Wavelet Transform and Neural Network

An Image Compression Method Based on Wavelet Transform and Neural Network

Journal from gdlhub / 2016-11-18 01:42:45
By : Suqing Zhang, Aiqiang Wang, Telkomnika
Created : 2015-06-01, with 1 files

Keyword : Image Compression, Wavelet Analysis, Artificial Neural Network
Url : http://journal.uad.ac.id/index.php/TELKOMNIKA/article/view/1430

Image compression is to compress the redundancy between the pixels as much as possible by using the correlation between the neighborhood pixels so as to reduce the transmission bandwidth and the storage space. This paper applies the integration of wavelet analysis and artificial neural network in the image compression, discusses its performance in the image compression theoretically, analyzes the multi-resolution analysis thought, constructs a wavelet neural network model which is used in the improved image compression and gives the corresponding algorithm. Only the weight in the output layer of the wavelet neural network needs training while the weight of the input layer can be determined according to the relationship between the interval of the sampling points and the interval of the compactly-supported intervals. Once determined, training is unnecessary, in this way, it accelerates the training speed of the wavelet neural network and solves the problem that it is difficult to determine the nodes of the hidden layer in the traditional neural network. The computer simulation experiment shows that the algorithm of this paper has more excellent compression effect than the traditional neural network method.

Description Alternative :

Image compression is to compress the redundancy between the pixels as much as possible by using the correlation between the neighborhood pixels so as to reduce the transmission bandwidth and the storage space. This paper applies the integration of wavelet analysis and artificial neural network in the image compression, discusses its performance in the image compression theoretically, analyzes the multi-resolution analysis thought, constructs a wavelet neural network model which is used in the improved image compression and gives the corresponding algorithm. Only the weight in the output layer of the wavelet neural network needs training while the weight of the input layer can be determined according to the relationship between the interval of the sampling points and the interval of the compactly-supported intervals. Once determined, training is unnecessary, in this way, it accelerates the training speed of the wavelet neural network and solves the problem that it is difficult to determine the nodes of the hidden layer in the traditional neural network. The computer simulation experiment shows that the algorithm of this paper has more excellent compression effect than the traditional neural network method.

Give Comment ?#(0) | Bookmark

PropertyValue
Publisher IDgdlhub
OrganizationTelkomnika
Contact NameHerti Yani, S.Kom
AddressJln. Jenderal Sudirman
CityJambi
RegionJambi
CountryIndonesia
Phone0741-35095
Fax0741-35093
Administrator E-mailelibrarystikom@gmail.com
CKO E-mailelibrarystikom@gmail.com

Print ...

Contributor...

  • , Editor: sukadi

Downnload...