Path: Top -> Journal -> Jurnal Internasional -> King Saud University -> 2015 -> Volume 27, Issue 2, April
Admissible curvature continuous areas for fair curves using G 2 Hermite PH quintic polynomial
Oleh : Zulfiqar Habib , Ghulam Rasool , Manabu Sakai, King Saud University
Dibuat : 2015-04-15, dengan 1 file
Keyword : Motion planning; Pythagorean hodograph (PH); Quintic polynomial; G 2 Hermite; Monotone; Curvature
Url : http://www.sciencedirect.com/science/article/pii/S1319157815000129
Sumber pengambilan dokumen : web
In this paper we derive admissible curvature continuous areas for monotonically increas-
ing curvature continuous smooth curve by using a single Pythagorean hodograph (PH) quintic
polynomial of
G
2
contact matching Hermite end conditions. Curves with monotonically increasing
or decreasing curvatures are considered highly smooth (fair) and are very useful in geometric design.
Making the design by using smooth curves is a fascinating problem of computing with significant
physical and esthetic applications especially in high speed transportation and robotics. First we
derive sufficient conditions for curvature continuity on a single PH quintic polynomial with given
Hermite end conditions then we find the admissible area for the smooth curve with respect to the
curvatures at its endpoints.
ยช
2015 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is
an open access article under the CC BY-NC-ND license (
http://creativecommons.org/licenses/by-nc-nd/4.0/
).
Beri Komentar ?#(0) | Bookmark
Properti | Nilai Properti |
---|---|
ID Publisher | gdlhub |
Organisasi | King Saud University |
Nama Kontak | Herti Yani, S.Kom |
Alamat | Jln. Jenderal Sudirman |
Kota | Jambi |
Daerah | Jambi |
Negara | Indonesia |
Telepon | 0741-35095 |
Fax | 0741-35093 |
E-mail Administrator | elibrarystikom@gmail.com |
E-mail CKO | elibrarystikom@gmail.com |
Print ...
Kontributor...
- , Editor: sukadi
Download...
Download hanya untuk member.
1-s2
File : 1-s2.0-S1319157815000129-main.pdf
(860294 bytes)