Path: Top -> Journal -> Telkomnika -> 2019 -> Vol 17, No 3, June 2019

Effect of kernel size on Wiener and Gaussian image filtering

Journal from gdlhub / 2019-05-18 09:15:43
Oleh : Zayed M. Ramadan, Telkomnika
Dibuat : 2019-05-18, dengan 1 file

Keyword : Gaussian, image filtering, image restoration, speckle noise, Wiener
Url : http://journal.uad.ac.id/index.php/TELKOMNIKA/article/view/11192
Sumber pengambilan dokumen : WEB

In this paper, the effect of the kernel size of Wiener and Gaussian filters on their image restoration qualities has been studied and analyzed. Four sizes of such kernels, namely 3x3, 5x5, 7x7 and 9x9 were simulated. Two different types of noise with zero mean and several variances have been used: Gaussian noise and speckle noise. Several image quality measuring indices have been applied in the computer simulations. In particular, mean absolute error (MAE), mean square error (MSE) and structural similarity (SSIM) index were used. Many images were tested in the simulations; however the results of three of them are shown in this paper. The results show that the Gaussian filter has a superior performance over the Wiener filter for all values of Gaussian and speckle noise variances mainly as it uses the smallest kernel size. To obtain a similar performance in Wiener filtering, a larger kernel size is required which produces much more blur in the output mage. The Wiener filter shows poor performance using the smallest kernel size (3x3) while the Gaussian filter shows the best results in such case. With the Gaussian filter being used, similar results of those obtained with low noise could be obtained in the case of high noise variance but with a higher kernel size.

Beri Komentar ?#(0) | Bookmark

PropertiNilai Properti
ID Publishergdlhub
OrganisasiTelkomnika
Nama KontakHerti Yani, S.Kom
AlamatJln. Jenderal Sudirman
KotaJambi
DaerahJambi
NegaraIndonesia
Telepon0741-35095
Fax0741-35093
E-mail Administratorelibrarystikom@gmail.com
E-mail CKOelibrarystikom@gmail.com

Print ...

Kontributor...

  • , Editor: sustriani

Download...