Path: Top -> Journal -> Telkomnika -> 2019 -> Vol 17, No 6, Desember 2019
Computer vision for purity, phenol, and pH detection of Luwak Coffee Green Bean
Oleh : Yusuf Hendrawan, Shinta Widyaningtyas, Sucipto Sucipto, Telkomnika
Dibuat : 2020-01-09, dengan 1 file
Keyword : : artificial neural network, computer vision, Luwak coffee C
Url : http://journal.uad.ac.id/index.php/TELKOMNIKA/issue/view/640
Sumber pengambilan dokumen : web
Computer vision as a non-invasive bio-sensing method provided opportunity to detect purity, total
phenol, and pH in Luwak coffee green bean. This study aimed to obtain the best Artificial Neural Network
(ANN) model to detect the percentage of purity, total phenol, and pH on Luwak coffee green bean by using
color features (red-green-blue, gray, hue-saturation-value, hue-saturation-lightness, L*a*b*), and Haralick
textural features with color co-occurrence matrix including entropy, energy, contrast, homogeneity, sum
mean, variance, correlation, maximum probability, inverse difference moment, and cluster tendency.
The best ANN structure was (5 inputs; 30 nodes in hidden layer 1; 40 nodes in hidden layer 2; and 3
outputs) which had training mean square error (MSE) of 0.0085 and validation MSE of 0.0442.
Beri Komentar ?#(0) | Bookmark
Properti | Nilai Properti |
---|---|
ID Publisher | gdlhub |
Organisasi | Telkomnika |
Nama Kontak | Herti Yani, S.Kom |
Alamat | Jln. Jenderal Sudirman |
Kota | Jambi |
Daerah | Jambi |
Negara | Indonesia |
Telepon | 0741-35095 |
Fax | 0741-35093 |
E-mail Administrator | elibrarystikom@gmail.com |
E-mail CKO | elibrarystikom@gmail.com |
Print ...
Kontributor...
- , Editor: Calvin
Download...
Download hanya untuk member.
12689-36244-1-PB
File : 12689-36244-1-PB.pdf
(651757 bytes)