Path: Top -> Journal -> Jurnal Nasional Teknik Elektro dan Teknologi Informasi -> 2018 -> Vol 7, No 3

Klasifikasi Nyeri pada Video Ekspresi Wajah Bayi Menggunakan DCNN Autoencoder dan LSTM

Journal from gdlhub / 2019-11-15 10:57:57
Oleh : Yosi Kristian, I Ketut Eddy Purnama, Effendy Hadi Sutanto, Lukman Zaman, Esther Irawati Setiawan, Mauridhi Hery Purnomo, JNTETI
Dibuat : 2019-05-07, dengan 1 file

Keyword : Neural network, DCNN, LSTM, autoencoder, klasifikasi nyeri, ekspresi wajah bayi
Url : http://ejnteti.jteti.ugm.ac.id/index.php/JNTETI/article/view/440
Sumber pengambilan dokumen : WEB

Babies are still unable to inform the pain they experience, therefore, babies cry when experiencing pain. With the rapid development of computer vision technologies, in the last few years, many researchers have tried to recognize pain from babies expressions using machine learning and image processing. In this paper, a research using Deep Convolution Neural Network (DCNN) Autoencoder and Long-Short Term Memory (LSTM) Network is conducted to detect cry and pain level from baby facial expression on video. DCNN Autoencoder is used to extract latent features from a single frame of baby face. Sequences of extracted latent features are then fed to LSTM so the pain level and cry can be recognized. Face detection and face landmark detection is also used to frontalize baby facial image before it is processed by DCNN Autoencoder. From the testing on DCNN autoencoder, the result shows that the best architecture used three convolutional layers and three transposed convolutional layers. As for the LSTM classifier, the best model is using four frame sequences.

Beri Komentar ?#(0) | Bookmark

PropertiNilai Properti
ID Publishergdlhub
OrganisasiJNTETI
Nama KontakHerti Yani, S.Kom
AlamatJln. Jenderal Sudirman
KotaJambi
DaerahJambi
NegaraIndonesia
Telepon0741-35095
Fax0741-35093
E-mail Administratorelibrarystikom@gmail.com
E-mail CKOelibrarystikom@gmail.com

Print ...

Kontributor...

  • , Editor: sustriani

Download...

  • Download hanya untuk member.

    440-745-1-SM
    Download Image
    File : 440-745-1-SM.pdf

    (1508119 bytes)