Path: Top -> Prosiding -> 2018
Automatic Features Extraction Using Autoencoder in Intrusion Detection System
Oleh : Yesi Novaria Kunang, Siti Nurmaini, Deris Stiawan, Ahmad Zarkasi, Firdaus, Jasmir,, Universitas Dinamika Bangsa
Dibuat : 2020-12-04, dengan 1 file
Keyword : Intrusion Detection System; Machine Learning, Features Extraction, Autoencoder
Url : http://ieeexplore.ieee.org/abstract/document/8605181/authors#authors
Intrusion Detection System (IDS) can detect attacks by analysing the patterns of data traffic in the network. With a large amount of data that is processed in the IDS, then need to do a feature extraction to reduce the computational cost of processing raw data in IDS. Feature extraction will transform features to the lower dimension to accelerate the learning process and improve the accuracy. This research on automatic feature extraction using simple autoencoder and SVM to classify attacks on IDS. We use various functions activation and loss to see how far this feature extraction feature can improve accuracy. We use Datasets KDD Cup` 99 NSL-KDD and to evaluate the effectiveness of the mechanisms of detection after extraction features process. In the proposed model, the activation functions autoencoder hyperparameter ReLU activation and loss function cross-entropy gives best accuracy value than other functions.
Beri Komentar ?#(0) | Bookmark
Properti | Nilai Properti |
---|---|
ID Publisher | gdlhub |
Organisasi | Universitas Dinamika Bangsa |
Nama Kontak | Herti Yani, S.Kom |
Alamat | Jln. Jenderal Sudirman |
Kota | Jambi |
Daerah | Jambi |
Negara | Indonesia |
Telepon | 0741-35095 |
Fax | 0741-35093 |
E-mail Administrator | elibrarystikom@gmail.com |
E-mail CKO | elibrarystikom@gmail.com |
Print ...
Kontributor...
- , Editor: Calvin
Download...
Download hanya untuk member.
10
File : 10.1109@ICECOS.2018.8605181_Yesi_Kunang.pdf
(238658 bytes)