Path: Top -> Journal -> Telkomnika -> 2014 -> Vol 12, No 4: December

Process Improvement of LSA for Semantic Relatedness Computing

Process Improvement of LSA for Semantic Relatedness Computing

Journal from gdlhub / 2016-11-15 03:44:10
Oleh : Wujian Yang, Lianyue Lin, Telkomnika
Dibuat : 2014-12-01, dengan 1 file

Keyword : semantic relatedness, Latent Semantic Analysi s, poetry category, singular value decomposition
Url : http://journal.uad.ac.id/index.php/TELKOMNIKA/article/view/811

Tang poetry semantic correlation computing is critical in many applications, such as searching, clustering, automatic generation of poetry and so on. Aiming to increase computing efficiency and accuracy of semantic relatedness, we improved the process of latent semantic analysis (LSA). In this paper, we adopted “representation of words semantic” instead of “words-by-poems” to represent the words semantic, which based on the finding that words having similar distribution in poetry categories are almost always semantically related. Meanwhile, we designed experiment which obtained segmentation words from more than 40000 poems, and computed relatedness by cosine value which calculated from decomposed co-occurrence matrix with Singular Value Decomposition (SVD) method. The experimental result shows that this method is good to analyze semantic and emotional relatedness of words in Tang poetry. We can find associated words and the relevance of poetry categories by matrix manipulation of the decomposing matrices as well.

Deskripsi Alternatif :

Tang poetry semantic correlation computing is critical in many applications, such as searching, clustering, automatic generation of poetry and so on. Aiming to increase computing efficiency and accuracy of semantic relatedness, we improved the process of latent semantic analysis (LSA). In this paper, we adopted “representation of words semantic” instead of “words-by-poems” to represent the words semantic, which based on the finding that words having similar distribution in poetry categories are almost always semantically related. Meanwhile, we designed experiment which obtained segmentation words from more than 40000 poems, and computed relatedness by cosine value which calculated from decomposed co-occurrence matrix with Singular Value Decomposition (SVD) method. The experimental result shows that this method is good to analyze semantic and emotional relatedness of words in Tang poetry. We can find associated words and the relevance of poetry categories by matrix manipulation of the decomposing matrices as well.

Beri Komentar ?#(0) | Bookmark

PropertiNilai Properti
ID Publishergdlhub
OrganisasiTelkomnika
Nama KontakHerti Yani, S.Kom
AlamatJln. Jenderal Sudirman
KotaJambi
DaerahJambi
NegaraIndonesia
Telepon0741-35095
Fax0741-35093
E-mail Administratorelibrarystikom@gmail.com
E-mail CKOelibrarystikom@gmail.com

Print ...

Kontributor...

  • , Editor: sukadi

Download...

  • Download hanya untuk member.

    811-2462-1-PB
    Download Image
    File : 811-2462-1-PB.pdf

    (212069 bytes)