Path: Top -> Journal -> Telkomnika -> 2014 -> Vol 12, No 4: December
Process Improvement of LSA for Semantic Relatedness Computing
Process Improvement of LSA for Semantic Relatedness Computing
Journal from gdlhub / 2016-11-15 03:44:10Oleh : Wujian Yang, Lianyue Lin, Telkomnika
Dibuat : 2014-12-01, dengan 1 file
Keyword : semantic relatedness, Latent Semantic Analysi s, poetry category, singular value decomposition
Url : http://journal.uad.ac.id/index.php/TELKOMNIKA/article/view/811
Tang poetry semantic correlation computing is critical in many applications, such as searching, clustering, automatic generation of poetry and so on. Aiming to increase computing efficiency and accuracy of semantic relatedness, we improved the process of latent semantic analysis (LSA). In this paper, we adopted representation of words semantic instead of words-by-poems to represent the words semantic, which based on the finding that words having similar distribution in poetry categories are almost always semantically related. Meanwhile, we designed experiment which obtained segmentation words from more than 40000 poems, and computed relatedness by cosine value which calculated from decomposed co-occurrence matrix with Singular Value Decomposition (SVD) method. The experimental result shows that this method is good to analyze semantic and emotional relatedness of words in Tang poetry. We can find associated words and the relevance of poetry categories by matrix manipulation of the decomposing matrices as well.
Deskripsi Alternatif :Tang poetry semantic correlation computing is critical in many applications, such as searching, clustering, automatic generation of poetry and so on. Aiming to increase computing efficiency and accuracy of semantic relatedness, we improved the process of latent semantic analysis (LSA). In this paper, we adopted representation of words semantic instead of words-by-poems to represent the words semantic, which based on the finding that words having similar distribution in poetry categories are almost always semantically related. Meanwhile, we designed experiment which obtained segmentation words from more than 40000 poems, and computed relatedness by cosine value which calculated from decomposed co-occurrence matrix with Singular Value Decomposition (SVD) method. The experimental result shows that this method is good to analyze semantic and emotional relatedness of words in Tang poetry. We can find associated words and the relevance of poetry categories by matrix manipulation of the decomposing matrices as well.
Beri Komentar ?#(0) | Bookmark
Properti | Nilai Properti |
---|---|
ID Publisher | gdlhub |
Organisasi | Telkomnika |
Nama Kontak | Herti Yani, S.Kom |
Alamat | Jln. Jenderal Sudirman |
Kota | Jambi |
Daerah | Jambi |
Negara | Indonesia |
Telepon | 0741-35095 |
Fax | 0741-35093 |
E-mail Administrator | elibrarystikom@gmail.com |
E-mail CKO | elibrarystikom@gmail.com |
Print ...
Kontributor...
- , Editor: sukadi
Download...
Download hanya untuk member.
811-2462-1-PB
File : 811-2462-1-PB.pdf
(212069 bytes)