Path: Top -> Journal -> Telkomnika -> 2014 -> Vol 12, No 4: December

Feature Selection Method Based on Improved Document Frequency

Feature Selection Method Based on Improved Document Frequency

Journal from gdlhub / 2016-11-15 02:25:04
Oleh : Wei Zheng, Guohe Feng, Telkomnika
Dibuat : 2014-12-01, dengan 1 file

Keyword : feature selection, document frequency, text classification
Url : http://journal.uad.ac.id/index.php/TELKOMNIKA/article/view/536

Feature selection is an important part of the process of text classification, there is a direct impact on the quality of feature selection because of the evaluation function. Document frequency (DF) is one of several commonly methods used feature selection, its shortcomings is the lack of theoretical basis on function construction, it will tend to select high-frequency words in selecting. To solve the problem, we put forward a improved algorithm named DFM combined with class distribution of characteristics and realize the algorithm with programming, DFM were compared with some feature selection method commonly used with experimental using support vector machine, as text classification .The results show that, when feature selection, the DFM methods performance is stable at work and is better than other methods in classification results.

Deskripsi Alternatif :

Feature selection is an important part of the process of text classification, there is a direct impact on the quality of feature selection because of the evaluation function. Document frequency (DF) is one of several commonly methods used feature selection, its shortcomings is the lack of theoretical basis on function construction, it will tend to select high-frequency words in selecting. To solve the problem, we put forward a improved algorithm named DFM combined with class distribution of characteristics and realize the algorithm with programming, DFM were compared with some feature selection method commonly used with experimental using support vector machine, as text classification .The results show that, when feature selection, the DFM methods performance is stable at work and is better than other methods in classification results.

Beri Komentar ?#(0) | Bookmark

PropertiNilai Properti
ID Publishergdlhub
OrganisasiTelkomnika
Nama KontakHerti Yani, S.Kom
AlamatJln. Jenderal Sudirman
KotaJambi
DaerahJambi
NegaraIndonesia
Telepon0741-35095
Fax0741-35093
E-mail Administratorelibrarystikom@gmail.com
E-mail CKOelibrarystikom@gmail.com

Print ...

Kontributor...

  • , Editor: sukadi

Download...

  • Download hanya untuk member.

    536-2443-1-PB
    Download Image
    File : 536-2443-1-PB.pdf

    (145847 bytes)