Path: Top -> Journal -> Jurnal ITB -> 2019 -> Vol 13, No 2
Using Graph Pattern Association Rules on Yago Knowledge Base
Oleh : Wahyudi Wahyudi, Masayu Leylia Khodra, Ary Setijadi Prihatmanto, Carmadi Machbub, ITB
Dibuat : 2019-11-16, dengan 1 file
Keyword : association rule, graph pattern, knowledge base, PCA confidence, standard confidence
Url : http://journals.itb.ac.id/index.php/jictra/article/view/7388
Sumber pengambilan dokumen : WEB
The use of graph pattern association rules (GPARs) on the Yago knowledge base is proposed. Extending association rules for itemsets, GPARS can help to discover regularities between entities in a knowledge base. A rule-generated graph pattern (RGGP) algorithm was used for extracting rules from the Yago knowledge base and a GPAR algorithm for creating the association rules. Our research resulted in 1114 association rules, with the value of standard confidence at 50.18% better than partial completeness assumption (PCA) confidence at 49.82%. Besides that the computation time for standard confidence was also better than for PCA confidence.
Beri Komentar ?#(0) | Bookmark
Properti | Nilai Properti |
---|---|
ID Publisher | gdlhub |
Organisasi | ITB |
Nama Kontak | Herti Yani, S.Kom |
Alamat | Jln. Jenderal Sudirman |
Kota | Jambi |
Daerah | Jambi |
Negara | Indonesia |
Telepon | 0741-35095 |
Fax | 0741-35093 |
E-mail Administrator | elibrarystikom@gmail.com |
E-mail CKO | elibrarystikom@gmail.com |
Print ...
Kontributor...
- , Editor: sustriani
Download...
Download hanya untuk member.
7388-33467-2-PB
File : 7388-33467-2-PB.pdf
(414770 bytes)