Path: Top -> Journal -> Jurnal Nasional Teknik Elektro dan Teknologi Informasi -> 2018 -> Vol 7, No 3

Estimasi Parameter Model Nonlinear Menggunakan Analisis Sensitivitas dan Pengoptimalan Berbasis Turunan

Journal from gdlhub / 2019-11-15 10:57:57
Oleh : Tua A. Tamba, JNTETI
Dibuat : 2019-05-07, dengan 1 file

Keyword : Estimasi parameter, metode stokastik, estimator maximum likelihood, pengoptimalan, analisis sensitivitas
Url : http://ejnteti.jteti.ugm.ac.id/index.php/JNTETI/article/view/446
Sumber pengambilan dokumen : WEB

Model estimation based on the observation data of a system’s states is an important subject in the study of dynamical systems. Maximum likelihood (ML) estimation is a stochastic estimation method which can be used to obtain an optimal set of parameter based on noisy measurements. This paper describes the method and implementation of the ML estimator to identify an optimal parameter set in a discrete-time nonlinear state space model. In particular, the optimal parameter set is defined as the value that minimizes the error between the actual and estimated model outputs of the system. This paper discusses a gradient-based optimization that is equipped with sensitivity analysis method for searching such a parameter set. Simulation results which describe an implementation of the proposed estimation method in a nonlinear system model are also discussed.

Beri Komentar ?#(0) | Bookmark

PropertiNilai Properti
ID Publishergdlhub
OrganisasiJNTETI
Nama KontakHerti Yani, S.Kom
AlamatJln. Jenderal Sudirman
KotaJambi
DaerahJambi
NegaraIndonesia
Telepon0741-35095
Fax0741-35093
E-mail Administratorelibrarystikom@gmail.com
E-mail CKOelibrarystikom@gmail.com

Print ...

Kontributor...

  • , Editor: sustriani

Download...

  • Download hanya untuk member.

    446-757-1-SM
    Download Image
    File : 446-757-1-SM.pdf

    (943538 bytes)