Path: Top -> Journal -> Telkomnika -> 2014 -> Vol 12, No 2: June

Nearest Neighbor-Based Indonesian G2P Conversion

Nearest Neighbor-Based Indonesian G2P Conversion

Journal from gdlhub / 2016-11-12 06:45:47
Oleh : Suyanto Suyanto, Agus Harjoko, Telkomnika
Dibuat : 2014-06-01, dengan 1 file

Keyword : grapheme-to-phoneme conversion, Indonesian language, pseudo nearest neighbor, partial orthogonal binary code, contextual weighting
Url : http://journal.uad.ac.id/index.php/TELKOMNIKA/article/view/57

Grapheme-to-phoneme conversion (G2P), also known as letter-to-sound conversion, is an important module in both speech synthesis and speech recognition. The methods of G2P give varying accuracies for different languages although they are designed to be language independent. This paper discusses a new model based on pseudo nearest neighbor rule (PNNR) for Indonesian G2P. In this model, partial orthogonal binary code for graphemes, contextual weighting, and neighborhood weighting are introduced. Testing to 9,604 unseen words shows that the model parameters are easy to be tuned to reach high accuracy. Testing to 123 sentences containing homographs shows that the model could disambiguate homographs if it uses long graphemic context. Compare to information gain tree, PNNR gives slightly higher phoneme error rate, but it could disambiguate homographs.

Deskripsi Alternatif :

Grapheme-to-phoneme conversion (G2P), also known as letter-to-sound conversion, is an important module in both speech synthesis and speech recognition. The methods of G2P give varying accuracies for different languages although they are designed to be language independent. This paper discusses a new model based on pseudo nearest neighbor rule (PNNR) for Indonesian G2P. In this model, partial orthogonal binary code for graphemes, contextual weighting, and neighborhood weighting are introduced. Testing to 9,604 unseen words shows that the model parameters are easy to be tuned to reach high accuracy. Testing to 123 sentences containing homographs shows that the model could disambiguate homographs if it uses long graphemic context. Compare to information gain tree, PNNR gives slightly higher phoneme error rate, but it could disambiguate homographs.

Beri Komentar ?#(0) | Bookmark

PropertiNilai Properti
ID Publishergdlhub
OrganisasiTelkomnika
Nama KontakHerti Yani, S.Kom
AlamatJln. Jenderal Sudirman
KotaJambi
DaerahJambi
NegaraIndonesia
Telepon0741-35095
Fax0741-35093
E-mail Administratorelibrarystikom@gmail.com
E-mail CKOelibrarystikom@gmail.com

Print ...

Kontributor...

  • , Editor: sukadi

Download...

  • Download hanya untuk member.

    57-58-1-PB
    Download Image
    File : 57-58-1-PB.pdf

    (278424 bytes)