Path: Top -> Journal -> Telkomnika -> 2017 -> Vol.15, No.1, March

Comparison of Feature Extraction Mel Frequency Cepstral Coefficients and Linear Predictive Coding in Automatic Speech Recognition for Indonesian

Journal from gdlhub / 2017-08-11 17:23:20
Oleh : Sukmawati Nur Endah, Satriyo Adhy, Sutikno Sutikno, Telkomnika
Dibuat : 2017-03-11, dengan 1 file

Keyword : Mel Frequency Cepstral Coefficients, linier predictive coding, speech recognition
Url : http://journal.uad.ac.id/index.php/TELKOMNIKA/article/view/3605
Sumber pengambilan dokumen : web

Speech recognition can be defined as the process of converting voice signals into the ranks of the word, by applying a specific algorithm that is implemented in a computer program. The research of speech recognition in Indonesia is relatively limited. This paper has studied methods of feature extraction which is the best among the Linear Predictive Coding (LPC) and Mel Frequency Cepstral Coefficients (MFCC) for speech recognition in Indonesian language. This is important because the method can produce a high accuracy for a particular language does not necessarily produce the same accuracy for other languages, considering every language has different characteristics. Thus this research hopefully can help further accelerate the use of automatic speech recognition for Indonesian language. There are two main processes in speech recognition, feature extraction and recognition. The method used for comparison feature extraction in this study is the LPC and MFCC, while the method of recognition using Hidden Markov Model (HMM). The test results showed that the LPC method is better than MFCC in Indonesian language speech recognition

Beri Komentar ?#(0) | Bookmark

PropertiNilai Properti
ID Publishergdlhub
OrganisasiTelkomnika
Nama KontakHerti Yani, S.Kom
AlamatJln. Jenderal Sudirman
KotaJambi
DaerahJambi
NegaraIndonesia
Telepon0741-35095
Fax0741-35093
E-mail Administratorelibrarystikom@gmail.com
E-mail CKOelibrarystikom@gmail.com

Print ...

Kontributor...

  • , Editor: sukadi

Download...