Path: Top -> Journal -> Telkomnika -> 2020 -> Vol 18, No 3, June
The comparison study of kernel KC-means and support vector machines for classifying schizophrenia
Oleh : Sri Hartini, Zuherman Rustam, Telkomnika
Dibuat : 2021-01-16, dengan 1 file
Keyword : fast fuzzy clustering, KC-means, kernel function, schizophrenia classification, support vector machines
Url : http://journal.uad.ac.id/index.php/TELKOMNIKA/article/view/14847
Sumber pengambilan dokumen : Web
Schizophrenia is one of mental disorder that affects the mind, feeling, and behavior. Its treatment is usually permanent and quite complicated; therefore, early detection is important. Kernel KC-means and support vector machines are the methods known as a good classifier. This research, therefore, aims to compare kernel KC-means and support vector machines, using data obtained from Northwestern University, which consists of 171 schizophrenia and 221 non-schizophrenia samples. The performance accuracy, F1-score, and running time were examined using the 10-fold cross-validation method. From the experiments, kernel KC-means with the sixth-order polynomial kernel gives 87.18 percent accuracy and 93.15 percent F1-score at the faster running time than support vector machines. However, with the same kernel, it was further deduced from the results that support vector machines provides better performance with an accuracy of 88.78 percent and F1-score of 94.05 percent.
Beri Komentar ?#(0) | Bookmark
Properti | Nilai Properti |
---|---|
ID Publisher | gdlhub |
Organisasi | Telkomnika |
Nama Kontak | Herti Yani, S.Kom |
Alamat | Jln. Jenderal Sudirman |
Kota | Jambi |
Daerah | Jambi |
Negara | Indonesia |
Telepon | 0741-35095 |
Fax | 0741-35093 |
E-mail Administrator | elibrarystikom@gmail.com |
E-mail CKO | elibrarystikom@gmail.com |
Print ...
Kontributor...
- , Editor: Calvin
Download...
Download hanya untuk member.
14847-42353-1-PB
File : 14847-42353-1-PB.pdf
(525950 bytes)