Path: Top -> Journal -> Jurnal Internasional -> King Saud University -> 2021 -> Volume 33, Issue 4, May

Ensemble human movement sequence prediction model with Apriori based Probability Tree Classifier (APTC) and Bagged J48 on Machine learning

Journal from gdlhub / 2022-02-12 15:39:20
Oleh : Sridhar Raj S., Nandhini M., King Saud University
Dibuat : 2022-02-12, dengan 0 file

Keyword : Data mining, Machine learning, Spatial-temporal-social data, Trajectory analysis, Human movement sequence prediction
Url : http://www.sciencedirect.com/science/article/pii/S1319157817303385
Sumber pengambilan dokumen : web

The accurate prediction of human movement trajectory has a variety of benefits for many applications such as optimizing nurse’s trajectory in a hospital, optimizing movements of old or disabled people to minimize their routine efforts, etc. To perform human movement prediction, large amount of historical positioning data from sensors has to be collected and mined. We analyzed different human sequential movement prediction approaches and their limitations. In this work, we propose a new classifier named Apriori based Probability Tree Classifier (APTC) which predicts the human movement sequence patterns in indoor environment. The APTC classifier is integrated into Bagged J48 Machine learning algorithm which results in an ensemble model to predict the future human movement patterns. The patterns are mined based on spatial, temporal and social data which add more accuracy to our prediction. Our model also performs clustering mechanism to detect the abnormal patterns.

Deskripsi Alternatif :

The accurate prediction of human movement trajectory has a variety of benefits for many applications such as optimizing nurse’s trajectory in a hospital, optimizing movements of old or disabled people to minimize their routine efforts, etc. To perform human movement prediction, large amount of historical positioning data from sensors has to be collected and mined. We analyzed different human sequential movement prediction approaches and their limitations. In this work, we propose a new classifier named Apriori based Probability Tree Classifier (APTC) which predicts the human movement sequence patterns in indoor environment. The APTC classifier is integrated into Bagged J48 Machine learning algorithm which results in an ensemble model to predict the future human movement patterns. The patterns are mined based on spatial, temporal and social data which add more accuracy to our prediction. Our model also performs clustering mechanism to detect the abnormal patterns.

Beri Komentar ?#(0) | Bookmark

PropertiNilai Properti
ID Publishergdlhub
OrganisasiKing Saud University
Nama KontakHerti Yani, S.Kom
AlamatJln. Jenderal Sudirman
KotaJambi
DaerahJambi
NegaraIndonesia
Telepon0741-35095
Fax0741-35093
E-mail Administratorelibrarystikom@gmail.com
E-mail CKOelibrarystikom@gmail.com

Print ...

Kontributor...

  • Editor: Calvin