Path: Top -> Journal -> Jurnal Internasional -> Fuzzy Information and Engineering -> 2021 -> Volume 13, Issue 2

Development of Unrestricted Fuzzy Linear Fractional Programming Problems Applied in Real Case

Journal from gdlhub / 2022-02-16 14:50:57
Oleh : Sapan Kumar Das, S. A. Edalatpanah & T. Mandal, Fuzzy Information and Engineering
Dibuat : 2022-02-16, dengan 0 file

Keyword : Fully fuzzy linear fractional programming problem (FFLFPP), triangular fuzzy numbers, ranking function
Url : http://www.tandfonline.com/doi/full/10.1080/16168658.2021.1915553
Sumber pengambilan dokumen : WEB

Purpose: We formulate a linear fractional programming (LFP) problem in which costs of the objective functions and constraints all are taken to be triangular fuzzy numbers.

Methodology: The fuzzy LFP problem is transformed into an equivalent crisp line fractional programming (CLFP) problem by using the centroid ranking function. This proposed method is based on crisp LFP and has a simple structure.

Findings: To show the efficiency of our proposed method a real life problem has been illustrated. The discussion of the practical problem will help decision makers to realise the usefulness of the CLFP problem.

Value: Using centroid ranking function, we overcome the all limitations of our day to day real life problem. Finally, a result analysis is also established for applicability of our method.

Deskripsi Alternatif :

Purpose: We formulate a linear fractional programming (LFP) problem in which costs of the objective functions and constraints all are taken to be triangular fuzzy numbers.

Methodology: The fuzzy LFP problem is transformed into an equivalent crisp line fractional programming (CLFP) problem by using the centroid ranking function. This proposed method is based on crisp LFP and has a simple structure.

Findings: To show the efficiency of our proposed method a real life problem has been illustrated. The discussion of the practical problem will help decision makers to realise the usefulness of the CLFP problem.

Value: Using centroid ranking function, we overcome the all limitations of our day to day real life problem. Finally, a result analysis is also established for applicability of our method.

Beri Komentar ?#(0) | Bookmark

PropertiNilai Properti
ID Publishergdlhub
OrganisasiFuzzy Information and Engineering
Nama KontakHerti Yani, S.Kom
AlamatJln. Jenderal Sudirman
KotaJambi
DaerahJambi
NegaraIndonesia
Telepon0741-35095
Fax0741-35093
E-mail Administratorelibrarystikom@gmail.com
E-mail CKOelibrarystikom@gmail.com

Print ...

Kontributor...

  • Editor: Calvin