Path: Top -> Journal -> Jurnal Internasional -> King Saud University -> 2015 -> Volume 27, Issue 1, January

Identification of VoIP encrypted traffic using a machine learning approach

Journal from gdlhub / 2017-08-15 13:32:24
Oleh : Riyad Alshammari , A. Nur Zincir-Heywood, King Saud University
Dibuat : 2015-01-15, dengan 1 file

Keyword : Machine learning; Encrypted traffic; Robustness; Network signatures
Url : http://www.sciencedirect.com/science/article/pii/S1319157814000561
Sumber pengambilan dokumen : web

We investigate the performance of three different machine learning algorithms, namely C5.0, AdaBoost and Genetic programming (GP), to generate robust classifiers for identifying VoIP encrypted traffic. To this end, a novel approach (Alshammari and Zincir-Heywood, 2011) based on machine learning is employed to generate robust signatures for classifying VoIP encrypted traffic. We apply statistical calculation on network flows to extract a feature set without including payload information, and information based on the source and destination of ports number and IP addresses. Our results show that finding and employing the most suitable sampling and machine learning technique can improve the performance of classifying VoIP significantly.

Beri Komentar ?#(0) | Bookmark

PropertiNilai Properti
ID Publishergdlhub
OrganisasiKing Saud University
Nama KontakHerti Yani, S.Kom
AlamatJln. Jenderal Sudirman
KotaJambi
DaerahJambi
NegaraIndonesia
Telepon0741-35095
Fax0741-35093
E-mail Administratorelibrarystikom@gmail.com
E-mail CKOelibrarystikom@gmail.com

Print ...

Kontributor...

  • , Editor: sukadi

Download...