Path: Top -> Journal -> Telkomnika -> 2016 -> Vol 14, No 3: September
Compressive Sensing Algorithm for Data Compression on Weather Monitoring System
Compressive Sensing Algorithm for Data Compression on Weather Monitoring System
Journal from gdlhub / 2016-11-08 09:28:53Oleh : Rika Sustika, Bambang Sugiarto, Telkomnika
Dibuat : 2016-09-01, dengan 1 file
Keyword : compressive sensing; DCT; representation basis; weather monitoring
Url : http://journal.uad.ac.id/index.php/TELKOMNIKA/article/view/3021
Compressive sensing (CS) is new data acquisition algorithm that can be used for compression. CS theory certifies that signals can be recovered from far fewer samples or measurements than Nyquist rate. On this paper, the compressive sensing technique is applied for data compression on our weather monitoring system. On this weather monitoring system, compression using compressive sensing with fewer samples or measurements means minimizing sensing and overall energy cost. Our focus on this paper lies in the selection of matrix for representation basis under which the weather data are sparsely represented. We evaluated three types of representation basis using data from real measurement. By comparing performance of data recovery, result show that DCT (Discrete Cosine Transform) is the best performance on sparsifying weather data
Deskripsi Alternatif :Compressive sensing (CS) is new data acquisition algorithm that can be used for compression. CS theory certifies that signals can be recovered from far fewer samples or measurements than Nyquist rate. On this paper, the compressive sensing technique is applied for data compression on our weather monitoring system. On this weather monitoring system, compression using compressive sensing with fewer samples or measurements means minimizing sensing and overall energy cost. Our focus on this paper lies in the selection of matrix for representation basis under which the weather data are sparsely represented. We evaluated three types of representation basis using data from real measurement. By comparing performance of data recovery, result show that DCT (Discrete Cosine Transform) is the best performance on sparsifying weather data
Beri Komentar ?#(0) | Bookmark
Properti | Nilai Properti |
---|---|
ID Publisher | gdlhub |
Organisasi | Telkomnika |
Nama Kontak | Herti Yani, S.Kom |
Alamat | Jln. Jenderal Sudirman |
Kota | Jambi |
Daerah | Jambi |
Negara | Indonesia |
Telepon | 0741-35095 |
Fax | 0741-35093 |
E-mail Administrator | elibrarystikom@gmail.com |
E-mail CKO | elibrarystikom@gmail.com |
Print ...
Kontributor...
- , Editor: sukadi
Download...
Download hanya untuk member.
3021-9939-1-PB
File : 3021-9939-1-PB.pdf
(343580 bytes)