Path: Top -> Journal -> Jurnal Nasional Teknik Elektro dan Teknologi Informasi -> 2019 -> Vol 8, No 1

Convolutional Neural Network untuk Pendeteksian Patah Tulang Femur pada Citra Ultrasonik B–Mode

Journal from gdlhub / 2019-11-15 10:56:48
Oleh : Rika Rokhana, Joko Priambodo, Tita Karlita, I Made Gede Sunarya, Eko Mulyanto Yuniarno, I Ketut Eddy Purnama, Mauridhi Hery Purnomo, JNTETI
Dibuat : 2019-05-08, dengan 1 file

Keyword : Citra ultrasonik B–mode, Convolutional Neural Network, lapisan konvolusi, tulang femur
Url : http://ejnteti.jteti.ugm.ac.id/index.php/JNTETI/article/view/491
Sumber pengambilan dokumen : WEB

The bone fracture detection using X–rays or CT–scan produces accurate images but has harmful effect radiation. This paper presented the use of ultrasonic waves (US) as an alternative to substitute those two instruments. This study used femur bovine and chicken bones in conditions with and without meat. The fractures are artificially made on transverse and oblique patterns. The scanning US probe produces two-dimensional (2D) B–mode images. Fracture detection is done using five variations of the Convolutional Neural Network (CNN) architectural design, i.e., CNN1–CNN5. The results showed that the CNN4 is the best design of bone contour recognition and bone fracture classification compared to the other tested designs, with 95.3% accuracy, 95% sensitivity, and 96% specificity. The comparison with the Support Vector Machine (SVM) and k-NN classification methods indicate that CNN has superior performance in accuracy, sensitivity, and specificity.

Beri Komentar ?#(0) | Bookmark

PropertiNilai Properti
ID Publishergdlhub
OrganisasiJNTETI
Nama KontakHerti Yani, S.Kom
AlamatJln. Jenderal Sudirman
KotaJambi
DaerahJambi
NegaraIndonesia
Telepon0741-35095
Fax0741-35093
E-mail Administratorelibrarystikom@gmail.com
E-mail CKOelibrarystikom@gmail.com

Print ...

Kontributor...

  • , Editor: sustriani

Download...

  • Download hanya untuk member.

    491-842-1-SM
    Download Image
    File : 491-842-1-SM.pdf

    (1222712 bytes)