Path: Top -> Journal -> Telkomnika -> 2020 -> Vol 18, No 2, April

Matching algorithm performance analysis for autocalibration method of stereo vision

Journal from gdlhub / 2021-01-20 15:18:14
Oleh : Raden Arief Setyawan, Rudy Soenoko, Moch Agus Choiron, Panca Mudjirahardjo, Telkomnika
Dibuat : 2021-01-13, dengan 1 file

Keyword : autocalibration; image matching; stereo vision;
Url : http://journal.uad.ac.id/index.php/TELKOMNIKA/article/view/14842
Sumber pengambilan dokumen : web

Stereo vision is one of the interesting research topics in the computer vision field. Two cameras are used to generate a disparity map, resulting in the depth estimation. Camera calibration is the most important step in stereo vision. The calibration step is used to generate an intrinsic parameter of each camera to get a better disparity map. In general, the calibration process is done manually by using a chessboard pattern, but this process is an exhausting task. Self-calibration is an important ability required to overcome this problem. Self-calibration required a robust and good matching algorithm to find the key feature between images as reference. The purpose of this paper is to analyze the performance of three matching algorithms for the autocalibration process. The matching algorithms used in this research are SIFT, SURF, and ORB. The result shows that SIFT performs better than other methods.

Beri Komentar ?#(0) | Bookmark

PropertiNilai Properti
ID Publishergdlhub
OrganisasiTelkomnika
Nama KontakHerti Yani, S.Kom
AlamatJln. Jenderal Sudirman
KotaJambi
DaerahJambi
NegaraIndonesia
Telepon0741-35095
Fax0741-35093
E-mail Administratorelibrarystikom@gmail.com
E-mail CKOelibrarystikom@gmail.com

Print ...

Kontributor...

  • , Editor: sukadi

Download...