Path: Top -> Journal -> Jurnal Nasional Teknik Elektro dan Teknologi Informasi -> 2017 -> Vol 6, No 3

Feature Selection Klasifikasi Kategori Cerita Pendek Menggunakan Naïve Bayes dan Algoritme Genetika

Journal from gdlhub / 2019-11-15 10:59:04
Oleh : Oman Somantri, Mohammad Khambali, JNTETI
Dibuat : 2017-11-06, dengan 1 file

Keyword : klasifikasi, kategori cerpen, Naive Bayes, algoritme genetika
Url : http://ejnteti.jteti.ugm.ac.id/index.php/JNTETI/article/view/332
Sumber pengambilan dokumen : WEB

Classification of short stories category based on age of the reader is still difficult. Therefore, a decision support system to classify the short stories category is needed. Naïve Bayes is one of methods suitable for short stories classification. However, Naïve Bayes has flaws in accuracy level, and needs to be optimized. In this paper, Genetic algorithm is proposed to increase the level of accuracy. In this case, genetic algorithm is used for feature selection. The results show an increase in the level of accuracy produced. The accuracy increases from 78,59% to 84,29%. In conclusion, the application of genetic algorithm on Naïve Bayes in classifying the online short stories category can improve the accuracy.

Beri Komentar ?#(0) | Bookmark

PropertiNilai Properti
ID Publishergdlhub
OrganisasiJNTETI
Nama KontakHerti Yani, S.Kom
AlamatJln. Jenderal Sudirman
KotaJambi
DaerahJambi
NegaraIndonesia
Telepon0741-35095
Fax0741-35093
E-mail Administratorelibrarystikom@gmail.com
E-mail CKOelibrarystikom@gmail.com

Print ...

Kontributor...

  • , Editor: sukadi

Download...

  • Download hanya untuk member.

    332-532-1-SM
    Download Image
    File : 332-532-1-SM.pdf

    (1019556 bytes)