Path: Top -> Journal -> Telkomnika -> 2019 -> Vol 17, No 3, June 2019

Improving of classification accuracy of cyst and tumor using local polynomial estimator

Journal from gdlhub / 2019-05-18 09:39:20
Oleh : Nur Chamidah, Kinanti Hanugera Gusti, Eko Tjahjono, Budi Lestari, Telkomnika
Dibuat : 2019-05-18, dengan 1 file

Keyword : accuracy, classification, cyst, tumor, local polynomial
Url : http://journal.uad.ac.id/index.php/TELKOMNIKA/article/view/12240
Sumber pengambilan dokumen : WEB

Cyst and tumor in oral cavity are seriously noticed by health experts along with increasing death cases of oral cancer in developing country. Early detection of cyst and tumor using dental panoramic image is needed since its initial growth does not cause any complaints. Image processing is done by mean for distinguishing the classification of cyst and tumor. The results in previous studies about classification of cyst and tumor were done by using a mathematical computation approach namely supports vector machine method that have still not satisfied and have not been validated. Therefore, in this study we propose a method, i.e., nonparametric regression model based on local polynomial estimator that can be improve the classification accuracy of cyst and tumor on human dental panoramic image. By using the proposed method, we get the classification accuracy of cyst and tumor, i.e., 90.91% which is greater than those by using the support vector machine method, i.e., 76.67%. Also, in validation process we obtain that the nonparametric regression model approach gives a significant Press’s Q statistical testing value. So, we conclude that the nonparametric regression model approach improves the classification accuracy and gives better outcome to classify cyst and tumor using dental panoramic image than the support vector machine method.

Beri Komentar ?#(0) | Bookmark

PropertiNilai Properti
ID Publishergdlhub
OrganisasiTelkomnika
Nama KontakHerti Yani, S.Kom
AlamatJln. Jenderal Sudirman
KotaJambi
DaerahJambi
NegaraIndonesia
Telepon0741-35095
Fax0741-35093
E-mail Administratorelibrarystikom@gmail.com
E-mail CKOelibrarystikom@gmail.com

Print ...

Kontributor...

  • , Editor: sustriani

Download...