Path: Top -> Journal -> Telkomnika -> 2020 -> Vol 18, No 5, October
Gender voice classification with huge accuracy rate
Oleh : Mustafa Sahib Shareef, Thulfiqar Abd, Yaqeen S. Mezaal, Telkomnika
Dibuat : 2021-01-25, dengan 1 file
Keyword : audacity; classification accuracy; machine learning algorithm (J 48); MFCC; VQ;
Url : http://journal.uad.ac.id/index.php/TELKOMNIKA/article/view/13717
Sumber pengambilan dokumen : web
Gender voice recognition stands for an imperative research field in acoustics and speech processing as human voice shows very remarkable aspects. This study investigates speech signals to devise a gender classifier by speech analysis to forecast the gender of the speaker by investigating diverse parameters of the voice sample. A database has 2270 voice samples of celebrities, both male and female. Through Mel frequency cepstrum coefficient (MFCC), vector quantization (VQ), and machine learning algorithm (J 48), an accuracy of about 100% is achieved by the proposed classification technique based on data mining and Java script.
Beri Komentar ?#(0) | Bookmark
Properti | Nilai Properti |
---|---|
ID Publisher | gdlhub |
Organisasi | Telkomnika |
Nama Kontak | Herti Yani, S.Kom |
Alamat | Jln. Jenderal Sudirman |
Kota | Jambi |
Daerah | Jambi |
Negara | Indonesia |
Telepon | 0741-35095 |
Fax | 0741-35093 |
E-mail Administrator | elibrarystikom@gmail.com |
E-mail CKO | elibrarystikom@gmail.com |
Print ...
Kontributor...
- , Editor: sukadi
Download...
Download hanya untuk member.
13717-46516-1-PB
File : 13717-46516-1-PB.pdf
(484628 bytes)