Path: Top -> Journal -> Jurnal Internasional -> King Saud University -> 2016 -> Volume 28, Issue 3, July

Sentiment classification of Roman-Urdu opinions using Naïve Bayesian, Decision Tree and KNN classification techniques

Journal from gdlhub / 2017-08-15 10:19:39
Oleh : Muhammad Bilal, Huma Israr, Muhammad Shahid, Amin Khan, King Saud University
Dibuat : 2016-07-15, dengan 1 file

Keyword : Roman Urdu Opinion mining Bag of words Naïve Bayes Decision Tree k-Nearest Neighbor
Url : http://www.sciencedirect.com/science/article/pii/S1319157815001330
Sumber pengambilan dokumen : web

Sentiment mining is a field of text mining to determine the attitude of people about a particular product, topic, politician in newsgroup posts, review sites, comments on facebook posts twitter, etc. There are many issues involved in opinion mining. One important issue is that opinions could be in different languages (English, Urdu, Arabic, etc.). To tackle each language according to its orientation is a challenging task. Most of the research work in sentiment mining has been done in English language. Currently, limited research is being carried out on sentiment classification of other languages like Arabic, Italian, Urdu and Hindi. In this paper, three classification models are used for text classification using Waikato Environment for Knowledge Analysis (WEKA). Opinions written in Roman-Urdu and English are extracted from a blog. These extracted opinions are documented in text files to prepare a training dataset containing 150 positive and 150 negative opinions, as labeled examples. Testing data set is supplied to three different models and the results in each case are analyzed. The results show that Naïve Bayesian outperformed Decision Tree and KNN in terms of more accuracy, precision, recall and F-measure.

Beri Komentar ?#(0) | Bookmark

PropertiNilai Properti
ID Publishergdlhub
OrganisasiKing Saud University
Nama KontakHerti Yani, S.Kom
AlamatJln. Jenderal Sudirman
KotaJambi
DaerahJambi
NegaraIndonesia
Telepon0741-35095
Fax0741-35093
E-mail Administratorelibrarystikom@gmail.com
E-mail CKOelibrarystikom@gmail.com

Print ...

Kontributor...

  • , Editor: sukadi

Download...