Path: Top -> Journal -> Telkomnika -> 2020 -> Vol 18, No 3, June
Convolutional neural network for maize leaf disease image classification
Oleh : Mohammad Syarief, Wahyudi Setiawan, Telkomnika
Dibuat : 2021-01-12, dengan 1 file
Keyword : alexnet, classification, convolutional neural network, k-nearest neighbor, maize leaf image
Url : http://journal.uad.ac.id/index.php/TELKOMNIKA/article/view/14840
Sumber pengambilan dokumen : Web
This article discusses the maize leaf disease image classification. The experimental images consist of 200 images with 4 classes: healthy, cercospora, common rust and northern leaf blight. There are 2 steps: feature extraction and classification. Feature extraction obtains features automatically using convolutional neural network (CNN). Seven CNN models were tested i.e AlexNet, virtual geometry group (VGG) 16, VGG19, GoogleNet, Inception-V3, residual network 50 (ResNet50) and ResNet101. While the classification using machine learning methods include k-Nearest neighbor, decision tree and support vector machine. Based on the testing results, the best classification was AlexNet and support vector machine with accuracy, sensitivity, specificity of 93.5%, 95.08%, and 93%, respectively.
Beri Komentar ?#(0) | Bookmark
Properti | Nilai Properti |
---|---|
ID Publisher | gdlhub |
Organisasi | Telkomnika |
Nama Kontak | Herti Yani, S.Kom |
Alamat | Jln. Jenderal Sudirman |
Kota | Jambi |
Daerah | Jambi |
Negara | Indonesia |
Telepon | 0741-35095 |
Fax | 0741-35093 |
E-mail Administrator | elibrarystikom@gmail.com |
E-mail CKO | elibrarystikom@gmail.com |
Print ...
Kontributor...
- , Editor: Calvin
Download...
Download hanya untuk member.
14840-42142-1-PB
File : 14840-42142-1-PB.pdf
(559194 bytes)