Path: Top -> Journal -> Telkomnika -> 2020 -> Vol 18, No 3, June

Convolutional neural network for maize leaf disease image classification

Journal from gdlhub / 2021-01-20 15:23:51
Oleh : Mohammad Syarief, Wahyudi Setiawan, Telkomnika
Dibuat : 2021-01-12, dengan 1 file

Keyword : alexnet, classification, convolutional neural network, k-nearest neighbor, maize leaf image
Url : http://journal.uad.ac.id/index.php/TELKOMNIKA/article/view/14840
Sumber pengambilan dokumen : Web

This article discusses the maize leaf disease image classification. The experimental images consist of 200 images with 4 classes: healthy, cercospora, common rust and northern leaf blight. There are 2 steps: feature extraction and classification. Feature extraction obtains features automatically using convolutional neural network (CNN). Seven CNN models were tested i.e AlexNet, virtual geometry group (VGG) 16, VGG19, GoogleNet, Inception-V3, residual network 50 (ResNet50) and ResNet101. While the classification using machine learning methods include k-Nearest neighbor, decision tree and support vector machine. Based on the testing results, the best classification was AlexNet and support vector machine with accuracy, sensitivity, specificity of 93.5%, 95.08%, and 93%, respectively.

Beri Komentar ?#(0) | Bookmark

PropertiNilai Properti
ID Publishergdlhub
OrganisasiTelkomnika
Nama KontakHerti Yani, S.Kom
AlamatJln. Jenderal Sudirman
KotaJambi
DaerahJambi
NegaraIndonesia
Telepon0741-35095
Fax0741-35093
E-mail Administratorelibrarystikom@gmail.com
E-mail CKOelibrarystikom@gmail.com

Print ...

Kontributor...

  • , Editor: Calvin

Download...