Path: Top -> Journal -> Telkomnika -> 2020 -> Vol 18, No 2, April

Adaptive threshold for moving objects detection using gaussian mixture model

Journal from gdlhub / 2021-01-20 15:18:14
Oleh : Moch Arief Soeleman, Aris Nurhindarto, Muslih Muslih, Karis W., Muljono Muljono, Farikh Al Zami, R. Anggi Pramunendar, Telkomnika
Dibuat : 2021-01-13, dengan 1 file

Keyword : detection; gaussian mixture model; moving object; Otsu; threshold;
Url : http://journal.uad.ac.id/index.php/TELKOMNIKA/article/view/14878
Sumber pengambilan dokumen : web

Moving object detection becomes the important task in the video surveilance system. Defining the threshold automatically is challenging to differentiate the moving object from the background within a video. This study proposes gaussian mixture model (GMM) as a threshold strategy in moving object detection. The performance of the proposed method is compared to the Otsu algorithm and gray threshold as the baseline method using mean square error (MSE) and Peak Signal Noise Ratio (PSNR). The performance comparison of the methods is evaluated on human video dataset. The average result of MSE value GMM is 257.18, Otsu is 595.36 and Gray is 645.39, so the MSE value is lower than Otsu and Gray threshold. The average result of PSNR value GMM is 24.71, Otsu is 20.66 and Gray is 19.35, so the PSNR value is higher than Otsu and Gray threshold. The performance of the proposed method outperforms the baseline method in term of error detection.

Beri Komentar ?#(0) | Bookmark

PropertiNilai Properti
ID Publishergdlhub
OrganisasiTelkomnika
Nama KontakHerti Yani, S.Kom
AlamatJln. Jenderal Sudirman
KotaJambi
DaerahJambi
NegaraIndonesia
Telepon0741-35095
Fax0741-35093
E-mail Administratorelibrarystikom@gmail.com
E-mail CKOelibrarystikom@gmail.com

Print ...

Kontributor...

  • , Editor: sukadi

Download...