Path: Top -> Journal -> Kursor -> 2017 -> Vol. 9 No. 1
CLASSIFICATION OF BATIK LAMONGAN BASED ON FEATURES OF COLOR, TEXTURE AND SHAPE
Oleh : Miftahus Sholihin, Siti Mujilahwati, Retno Wardhani, Kursor
Dibuat : 2018-06-02, dengan 1 file
Keyword : Batik, Classification, Preprocessing, Feature Extraction, Gray Level Cooccurence Matrix, K-Nearest Neighbors
Url : http://kursorjournal.org/index.php/kursor/article/view/114
Sumber pengambilan dokumen : WEB
Classification aims to classify object into specific classes based on the value of the attribute associated with the object being observed. In this research designed a system that serves to classify Lamongan batik cloth based on color features using color moment, texture using Gray Level Co-occurence Matrix (GLCM), and shape using moment invariant, classification using K-Nearest Neighbors (K-NN) method. In outline the system was built consists of three main processes namely pre-processing, feature extraction, and classification. The highest accuracy rate in this study was 90.4% when the value of k = 6.
Beri Komentar ?#(0) | Bookmark
Properti | Nilai Properti |
---|---|
ID Publisher | gdlhub |
Organisasi | Kursor |
Nama Kontak | Herti Yani, S.Kom |
Alamat | Jln. Jenderal Sudirman |
Kota | Jambi |
Daerah | Jambi |
Negara | Indonesia |
Telepon | 0741-35095 |
Fax | 0741-35093 |
E-mail Administrator | elibrarystikom@gmail.com |
E-mail CKO | elibrarystikom@gmail.com |
Print ...
Kontributor...
- , Editor: sukadi
Download...
Download hanya untuk member.
114-1-309-1-10-20180420
File : 114-1-309-1-10-20180420.pdf
(736204 bytes)