Path: Top -> Journal -> Telkomnika -> 2021 -> Vol 19, No 1, February
A genetic algorithm approach for predicting ribonucleic acid sequencing data classification using KNN and decision tree
Oleh : Micheal Olaolu Arowolo, Marion Olubunmi Adebiyi, Ayodele Ariyo Adebiyi, Telkomnika
Dibuat : 2021-02-04, dengan 1 file
Keyword : decision tree; genetic algorithm; KNN; mosquito anopheles; ribonucleic acid sequencing;
Url : http://journal.uad.ac.id/index.php/TELKOMNIKA/article/view/16381/9725
Sumber pengambilan dokumen : web
Malaria larvae accept explosive variable lifecycle as they spread across numerous mosquito vector stratosphere. Transcriptomes arise in thousands of diverse parasites. Ribonucleic acid sequencing (RNA-seq) is a prevalent gene expression that has led to enhanced understanding of genetic queries. RNA-seq tests transcript of gene expression, and provides methodological enhancements to machine learning procedures. Researchers have proposed several methods in evaluating and learning biological data. Genetic algorithm (GA) as a feature selection process is used in this study to fetch relevant information from the RNA-Seq Mosquito Anopheles gambiae malaria vector dataset, and evaluates the results using kth nearest neighbor (KNN) and decision tree classification algorithms. The experimental results obtained a classification accuracy of 88.3 and 98.3 percents respectively.
Beri Komentar ?#(0) | Bookmark
Properti | Nilai Properti |
---|---|
ID Publisher | gdlhub |
Organisasi | Telkomnika |
Nama Kontak | Herti Yani, S.Kom |
Alamat | Jln. Jenderal Sudirman |
Kota | Jambi |
Daerah | Jambi |
Negara | Indonesia |
Telepon | 0741-35095 |
Fax | 0741-35093 |
E-mail Administrator | elibrarystikom@gmail.com |
E-mail CKO | elibrarystikom@gmail.com |
Print ...
Kontributor...
- , Editor: sukadi
Download...
Download hanya untuk member.
16381-49930-1-PB
File : 16381-49930-1-PB.pdf
(506881 bytes)