Path: Top -> Journal -> Jurnal Internasional -> King Saud University -> 2019 -> Volume 31, Issue 3, July
An adaptive framework for real-time data reduction in AMI
Oleh : Marwa F. Mohamed, Abd El-Rahman Shabayek, Mahmoud El-Gayyar, Hamed Nassar, King Saud University
Dibuat : 2019-09-21, dengan 1 file
Keyword : Real-time data reduction, Forecasting methods, Advanced Metering Infrastructure (AMI), Decision tree algorithms, Cloud
Url : http://www.sciencedirect.com/science/article/pii/S1319157817302781
Sumber pengambilan dokumen : WEB
In existing Advanced Metering Infrastructure (AMI), data collection intervals for each smart meter (SM) typically vary from 15 to 60 min. If we have 1 million SMs that transmit data every 15 min, these SMs will export 4 million records per hour. This leads to dramatically increasing bandwidth usage, energy consumption, traffic cost and I/O congestion. In this work, we present an adaptive framework for minimizing the amount of data transfer from SMs. The reduction in the framework is forecasting-based; when an SM reading is close to the forecasted value, the SM does not transmit the reading. In order for the framework to be adaptive to the ever-changing pattern of SM data, it is provided with a pool of forecasting methods. A supervised-learning scheme is employed to switch in real-time to the forecasting method most suitable to the current data pattern. The experimental results demonstrate that the proposed framework achieves data reduction rates up to 98% with accuracy 96%, depending on the operational parameters of the framework and consumer behavior (statistical features of SM data).
Beri Komentar ?#(0) | Bookmark
Properti | Nilai Properti |
---|---|
ID Publisher | gdlhub |
Organisasi | King Saud University |
Nama Kontak | Herti Yani, S.Kom |
Alamat | Jln. Jenderal Sudirman |
Kota | Jambi |
Daerah | Jambi |
Negara | Indonesia |
Telepon | 0741-35095 |
Fax | 0741-35093 |
E-mail Administrator | elibrarystikom@gmail.com |
E-mail CKO | elibrarystikom@gmail.com |
Print ...
Kontributor...
- , Editor: sustriani
Download...
Download hanya untuk member.
1-s2
File : 1-s2.0-S1319157817302781-main.pdf
(1149256 bytes)