Path: Top -> Journal -> Telkomnika -> 2015 -> Vol 13, No 3: September

The Spatial-Temporal Anomaly Detection Algorithm in Wireless Sensor Networks

The Spatial-Temporal Anomaly Detection Algorithm in Wireless Sensor Networks

Journal from gdlhub / 2016-11-16 07:17:17
Oleh : Liu Xin, Zhang Shaoliang, Telkomnika
Dibuat : 2015-09-01, dengan 1 file

Keyword : wireless sensor networks, spatial–temporal anomaly, data stream
Url : http://journal.uad.ac.id/index.php/TELKOMNIKA/article/view/2010

As the traditional anomaly detection algorithms cannot effectively identify the spatial-temporal anomaly of the wireless sensor networks (WSNs), taking the CO2 concentration collected by WSNs for example, we propose the spatial-temporal anomaly detection algorithm in wireless sensor network. First we use the 3 rules to realize the anomaly detection of the adaptive threshold. Then extract the eigenvalue (average) of sliding window to be detected, construct the spatial-temporal matrix for the relationship between neighbor nodes in the specified interval, use the fuzzy clustering method to analyze the eigenvalue of adjacent nodes in spatial-temporal correlation and classify them, and identify abnormal leakage probability according to the results of the classification. Finally, use real data to verify this algorithm and analyze the parameters selected , the results show that the algorithm is high detection rate and low false alarm rate.

Deskripsi Alternatif :

As the traditional anomaly detection algorithms cannot effectively identify the spatial-temporal anomaly of the wireless sensor networks (WSNs), taking the CO2 concentration collected by WSNs for example, we propose the spatial-temporal anomaly detection algorithm in wireless sensor network. First we use the 3 rules to realize the anomaly detection of the adaptive threshold. Then extract the eigenvalue (average) of sliding window to be detected, construct the spatial-temporal matrix for the relationship between neighbor nodes in the specified interval, use the fuzzy clustering method to analyze the eigenvalue of adjacent nodes in spatial-temporal correlation and classify them, and identify abnormal leakage probability according to the results of the classification. Finally, use real data to verify this algorithm and analyze the parameters selected , the results show that the algorithm is high detection rate and low false alarm rate.

Beri Komentar ?#(0) | Bookmark

PropertiNilai Properti
ID Publishergdlhub
OrganisasiTelkomnika
Nama KontakHerti Yani, S.Kom
AlamatJln. Jenderal Sudirman
KotaJambi
DaerahJambi
NegaraIndonesia
Telepon0741-35095
Fax0741-35093
E-mail Administratorelibrarystikom@gmail.com
E-mail CKOelibrarystikom@gmail.com

Print ...

Kontributor...

  • , Editor: sukadi

Download...

  • Download hanya untuk member.

    2010-5091-1-PB
    Download Image
    File : 2010-5091-1-PB.pdf

    (1025347 bytes)