Path: Top -> Journal -> Telkomnika -> 2014 -> Vol 12, No 4: December

Image Deblurring via an Adaptive Dictionary Learning Strategy

Image Deblurring via an Adaptive Dictionary Learning Strategy

Journal from gdlhub / 2016-11-15 01:58:28
Oleh : Lei Li, Ruiting Zhang, Jiangmin Kan, Wenbin Li, Telkomnika
Dibuat : 2014-12-01, dengan 1 file

Keyword : sparse representation, adaptive dictionary learning, image deblurring
Url : http://journal.uad.ac.id/index.php/TELKOMNIKA/article/view/532

Recently, sparse representation has been applied to image deblurring. The dictionary is the fundamental part of it and the proper selection of dictionary is very important to achieve super performance. The global learned dictionary might achieve inferior performances since it could not mine the specific information such as the texture and edge which is contained in the blurred image. However, it is a computational burden to train a new dictionary for image deblurring which requires the whole image (or most parts) as input; training the dictionary on only a few patches would result in over-fitting. To address the problem, we instead propose an online adaption strategy to transfer the global learned dictionary to a specific image. In our deblurring algorithm, the sparse coefficients, latent image, blur kernel and the dictionary are updated alternatively. And in every step, the global learned dictionary is updated in an online form via sampling only a few training patches from the target noisy image. Since our adaptive dictionary exploits the specific information, our deblurring algorithm shows superior performance over other state-of-the-art algorithms.

Deskripsi Alternatif :

Recently, sparse representation has been applied to image deblurring. The dictionary is the fundamental part of it and the proper selection of dictionary is very important to achieve super performance. The global learned dictionary might achieve inferior performances since it could not mine the specific information such as the texture and edge which is contained in the blurred image. However, it is a computational burden to train a new dictionary for image deblurring which requires the whole image (or most parts) as input; training the dictionary on only a few patches would result in over-fitting. To address the problem, we instead propose an online adaption strategy to transfer the global learned dictionary to a specific image. In our deblurring algorithm, the sparse coefficients, latent image, blur kernel and the dictionary are updated alternatively. And in every step, the global learned dictionary is updated in an online form via sampling only a few training patches from the target noisy image. Since our adaptive dictionary exploits the specific information, our deblurring algorithm shows superior performance over other state-of-the-art algorithms.

Beri Komentar ?#(0) | Bookmark

PropertiNilai Properti
ID Publishergdlhub
OrganisasiTelkomnika
Nama KontakHerti Yani, S.Kom
AlamatJln. Jenderal Sudirman
KotaJambi
DaerahJambi
NegaraIndonesia
Telepon0741-35095
Fax0741-35093
E-mail Administratorelibrarystikom@gmail.com
E-mail CKOelibrarystikom@gmail.com

Print ...

Kontributor...

  • , Editor: sukadi

Download...

  • Download hanya untuk member.

    532-2432-1-PB
    Download Image
    File : 532-2432-1-PB.pdf

    (307223 bytes)