Path: Top -> Journal -> Jurnal Internasional -> King Saud University -> 2021 -> Volume 33, Issue 5, June
Multilevel thresholding for image segmentation using Krill Herd Optimization algorithm
Oleh : K.P. Baby Resma, Madhu S. Nair, King Saud University
Dibuat : 2022-02-14, dengan 0 file
Keyword : Krill Herd Optimization, Bio-inspired computing, Image segmentation, Multilevel thresholding, Otsus method, Kapurs method
Url : http://www.sciencedirect.com/science/article/pii/S1319157818300739
Sumber pengambilan dokumen : web
In this paper a novel multilevel thresholding algorithm using a meta-heuristic Krill Herd Optimization (KHO) algorithm has been proposed for solving the image segmentation problem. The optimum threshold values are determined by the maximization of Kapurs or Otsus objective function using Krill Herd Optimization technique. The proposed method reduces the computational time for computing the optimum thresholds for multilevel thresholding. The applicability and computational efficiency of the Krill Herd Optimization based multilevel thresholding is demonstrated using various benchmark images. A detailed comparative analysis with other existing bio-inspired techniques based multilevel thresholding techniques such as Bacterial Foraging (BF), Particle Swarm Optimization (PSO), Genetic Algorithm (GA) and Moth-Flame Optimization (MFO) has been performed to prove the superior performance of the proposed method.
Deskripsi Alternatif :In this paper a novel multilevel thresholding algorithm using a meta-heuristic Krill Herd Optimization (KHO) algorithm has been proposed for solving the image segmentation problem. The optimum threshold values are determined by the maximization of Kapurs or Otsus objective function using Krill Herd Optimization technique. The proposed method reduces the computational time for computing the optimum thresholds for multilevel thresholding. The applicability and computational efficiency of the Krill Herd Optimization based multilevel thresholding is demonstrated using various benchmark images. A detailed comparative analysis with other existing bio-inspired techniques based multilevel thresholding techniques such as Bacterial Foraging (BF), Particle Swarm Optimization (PSO), Genetic Algorithm (GA) and Moth-Flame Optimization (MFO) has been performed to prove the superior performance of the proposed method.
Beri Komentar ?#(0) | Bookmark
Properti | Nilai Properti |
---|---|
ID Publisher | gdlhub |
Organisasi | King Saud University |
Nama Kontak | Herti Yani, S.Kom |
Alamat | Jln. Jenderal Sudirman |
Kota | Jambi |
Daerah | Jambi |
Negara | Indonesia |
Telepon | 0741-35095 |
Fax | 0741-35093 |
E-mail Administrator | elibrarystikom@gmail.com |
E-mail CKO | elibrarystikom@gmail.com |
Print ...
Kontributor...
- Editor: Calvin