Path: Top -> Journal -> Telkomnika -> 2020 -> Vol 18, No 3, June

Classification of pneumonia from X-ray images using siamese convolutional network

Journal from gdlhub / 2021-01-20 15:23:51
Oleh : Kennard Alcander Prayogo, Alethea Suryadibrata, Julio Christian Young, Telkomnika
Dibuat : 2021-01-12, dengan 1 file

Keyword : chest x-ray, image classification, pneumonia, siamese convolutional network
Url : http://journal.uad.ac.id/index.php/TELKOMNIKA/article/view/14751
Sumber pengambilan dokumen : Web

Pneumonia is one of the highest global causes of deaths especially for children under 5 years old. This happened mainly because of the difficulties in identifying the cause of pneumonia. As a result, the treatment given may not be suitable for each pneumonia case. Recent studies have used deep learning approaches to obtain better classification within the cause of pneumonia. In this research, we used siamese convolutional network (SCN) to classify chest x-ray pneumonia image into 3 classes, namely normal conditions, bacterial pneumonia, and viral pneumonia. Siamese convolutional network is a neural network architecture that learns similarity knowledge between pairs of image inputs based on the differences between its features. One of the important benefits of classifying data with SCN is the availability of comparable images that can be used as a reference when determining class. Using SCN, our best model achieved 80.03% accuracy, 79.59% f1 score, and an improved result reasoning by providing the comparable images.

Beri Komentar ?#(0) | Bookmark

PropertiNilai Properti
ID Publishergdlhub
OrganisasiTelkomnika
Nama KontakHerti Yani, S.Kom
AlamatJln. Jenderal Sudirman
KotaJambi
DaerahJambi
NegaraIndonesia
Telepon0741-35095
Fax0741-35093
E-mail Administratorelibrarystikom@gmail.com
E-mail CKOelibrarystikom@gmail.com

Print ...

Kontributor...

  • , Editor: Calvin

Download...