Path: Top -> Journal -> Telkomnika -> 2015 -> Vol 13, No 4: December

A Neighbor-finding Algorithm Involving the Application of SNAM in Binary-image Representation

A Neighbor-finding Algorithm Involving the Application of SNAM in Binary-image Representation

Journal from gdlhub / 2016-11-16 06:30:51
Oleh : Jie He, Hui Guo, Defa Hu, Telkomnika
Dibuat : 2015-12-01, dengan 1 file

Keyword : Neighbor-Finding; SNAM for Binary-Image; Minor-Diagonal Scanning Mode; Grid Array
Url : http://journal.uad.ac.id/index.php/TELKOMNIKA/article/view/1899

In view of the low execution efficiency and poor practicability of the existing neighbor-finding method, a fast neighbor-finding algorithm is put forward on the basis of Square Non-symmetry and Anti-packing Model (SNAM) for binary-image. First of all, the improved minor-diagonal scanning way is applied to strengthen SNAM’s adaptability to various textures, thus reducing the total number of nodes after coding; then the storage structures for its sub-patterns are standardized and a grid array is used to recover the spatial-position relationships among sub-patterns, so as to further reduce the complexity of the neighbor-finding algorithm. Experimental result shows that this method’s execution efficiency is significantly higher than that of the classic Linear Quad Tree (LQT)-based neighbor-finding method.

Deskripsi Alternatif :

In view of the low execution efficiency and poor practicability of the existing neighbor-finding method, a fast neighbor-finding algorithm is put forward on the basis of Square Non-symmetry and Anti-packing Model (SNAM) for binary-image. First of all, the improved minor-diagonal scanning way is applied to strengthen SNAM’s adaptability to various textures, thus reducing the total number of nodes after coding; then the storage structures for its sub-patterns are standardized and a grid array is used to recover the spatial-position relationships among sub-patterns, so as to further reduce the complexity of the neighbor-finding algorithm. Experimental result shows that this method’s execution efficiency is significantly higher than that of the classic Linear Quad Tree (LQT)-based neighbor-finding method.

Beri Komentar ?#(0) | Bookmark

PropertiNilai Properti
ID Publishergdlhub
OrganisasiTelkomnika
Nama KontakHerti Yani, S.Kom
AlamatJln. Jenderal Sudirman
KotaJambi
DaerahJambi
NegaraIndonesia
Telepon0741-35095
Fax0741-35093
E-mail Administratorelibrarystikom@gmail.com
E-mail CKOelibrarystikom@gmail.com

Print ...

Kontributor...

  • , Editor: sukadi

Download...