Path: Top -> Journal -> Jurnal ITB -> 2021 -> Vol 14, No 3

Development of Hybrid Automatic Segmentation Technique of a Single Leaf from Overlapping Leaves Image

Journal from gdlhub / 2021-08-02 18:52:06
Oleh : Jibrin Bala, Habeeb Bello Salau, Ime Jarlath Umoh, Adeiza James Onumanyi, Salawudeen Ahmed Tijani, Basira Yahaya, ITB
Dibuat : 2021-08-02, dengan 0 file

Keyword : Agriculture, Leaf, Precision, Segmentation, Sobel
Url : http://journals.itb.ac.id/index.php/jictra/article/view/14178
Sumber pengambilan dokumen : Web

The segmentation of a single leaf from an image with overlapping leaves is an important step towards the realization of effective precision agricultural systems. A popular approach used for this segmentation task is the hybridization of the Chan-Vese model and the Sobel operator CV-SO. This hybridized approach is popular because of its simplicity and effectiveness in segmenting a single leaf of interest from a complex background of overlapping leaves. However, the manual threshold and parameter tuning procedure of the CV-SO algorithm often degrades its detection performance. In this paper, we address this problem by introducing a dynamic iterative model to determine the optimal parameters for the CV-SO algorithm, which we dubbed the Dynamic CV-SO (DCV-SO) algorithm. This is a new hybrid automatic segmentation technique that attempts to improve the detection performance of the original hybrid CV-SO algorithm by reducing its mean error rate. The results obtained via simulation indicate that the proposed method yielded a 1.23% reduction in the mean error rate against the original CV-SO method.

Deskripsi Alternatif :

The segmentation of a single leaf from an image with overlapping leaves is an important step towards the realization of effective precision agricultural systems. A popular approach used for this segmentation task is the hybridization of the Chan-Vese model and the Sobel operator CV-SO. This hybridized approach is popular because of its simplicity and effectiveness in segmenting a single leaf of interest from a complex background of overlapping leaves. However, the manual threshold and parameter tuning procedure of the CV-SO algorithm often degrades its detection performance. In this paper, we address this problem by introducing a dynamic iterative model to determine the optimal parameters for the CV-SO algorithm, which we dubbed the Dynamic CV-SO (DCV-SO) algorithm. This is a new hybrid automatic segmentation technique that attempts to improve the detection performance of the original hybrid CV-SO algorithm by reducing its mean error rate. The results obtained via simulation indicate that the proposed method yielded a 1.23% reduction in the mean error rate against the original CV-SO method.

Beri Komentar ?#(0) | Bookmark

PropertiNilai Properti
ID Publishergdlhub
OrganisasiITB
Nama KontakHerti Yani, S.Kom
AlamatJln. Jenderal Sudirman
KotaJambi
DaerahJambi
NegaraIndonesia
Telepon0741-35095
Fax0741-35093
E-mail Administratorelibrarystikom@gmail.com
E-mail CKOelibrarystikom@gmail.com

Print ...

Kontributor...

  • Editor: Calvin