Path: Top -> Journal -> Jurnal Internasional -> King Saud University -> 2017 -> Volume 29, Issue 4, October

Currency recognition using a smartphone: Comparison between color SIFT and gray scale SIFT algorithms

Journal from gdlhub / 2017-11-07 14:23:16
Oleh : Iyad Abu Doush, Sahar AL-Btoush, King Saud University
Dibuat : 2017-11-07, dengan 1 file

Keyword : Currency recognitionSIFT algorithmMobile currency recognition
Url : http://www.sciencedirect.com/science/article/pii/S1319157816300416
Sumber pengambilan dokumen : WEB

Banknote recognition means classifying the currency (coin and paper) to the correct class. In this paper, we developed a dataset for Jordanian currency. After that we applied automatic mobile recognition system using a smartphone on the dataset using scale-invariant feature transform (SIFT) algorithm. This is the first attempt, to the best of the authors knowledge, to recognize both coins and paper banknotes on a smartphone using SIFT algorithm. SIFT has been developed to be the most robust and efficient local invariant feature descriptor. Color provides significant information and important values in the object description process and matching tasks. Many objects cannot be classified correctly without their color features. We compared between two approaches colored local invariant feature descriptor (color SIFT approach) and gray image local invariant feature descriptor (gray SIFT approach). The evaluation results show that the color SIFT approach outperforms the gray SIFT approach in terms of processing time and accuracy.

Beri Komentar ?#(0) | Bookmark

PropertiNilai Properti
ID Publishergdlhub
OrganisasiKing Saud University
Nama KontakHerti Yani, S.Kom
AlamatJln. Jenderal Sudirman
KotaJambi
DaerahJambi
NegaraIndonesia
Telepon0741-35095
Fax0741-35093
E-mail Administratorelibrarystikom@gmail.com
E-mail CKOelibrarystikom@gmail.com

Print ...

Kontributor...

  • , Editor: sukadi

Download...