Path: Top -> Journal -> Telkomnika -> 2016 -> Vol 14, No 2: June
Cluster Analysis for SME Risk Analysis Documents Based on Pillar K-Means
Cluster Analysis for SME Risk Analysis Documents Based on Pillar K-Means
Journal from gdlhub / 2016-11-05 02:49:47Oleh : Irfan Wahyudin, Taufik Djatna, Wisnu Ananta Kusuma, Telkomnika
Dibuat : 2016-06-01, dengan 1 file
Keyword : risk analysis, SME business, centroid optimazion, K-Means, opinion mining, sentiment analysis
Url : http://journal.uad.ac.id/index.php/TELKOMNIKA/article/view/2385
In Small Medium Enterprises (SME) financing risk analysis, the implementation of qualitative model by giving opinion regarding business risk is to overcome the subjectivity in quantitative model. However, there is another problem that the decision makers have difficulity to quantify the risks weight that delivered through those opinions. Thus, we focused on three objectives to overcome the problems that oftenly occur in qualitative model implementation. First, we modelled risk clusters using K-Means clustering, optimized by Pillar Algorithm to get the optimum number of clusters. Secondly, we performed risk measurement by calculating term-importance scores using TF-IDF combined with term-sentiment scores based on SentiWordNet 3.0 for Bahasa Indonesia. Eventually, we summarized the result by correlating the featured terms in each cluster with the 5Cs Credit Criteria. The result shows that the model is effective to group and measure the level of the risk and can be used as a basis for the decision makers in approving the loan proposal.
Deskripsi Alternatif :In Small Medium Enterprises (SME) financing risk analysis, the implementation of qualitative model by giving opinion regarding business risk is to overcome the subjectivity in quantitative model. However, there is another problem that the decision makers have difficulity to quantify the risks weight that delivered through those opinions. Thus, we focused on three objectives to overcome the problems that oftenly occur in qualitative model implementation. First, we modelled risk clusters using K-Means clustering, optimized by Pillar Algorithm to get the optimum number of clusters. Secondly, we performed risk measurement by calculating term-importance scores using TF-IDF combined with term-sentiment scores based on SentiWordNet 3.0 for Bahasa Indonesia. Eventually, we summarized the result by correlating the featured terms in each cluster with the 5Cs Credit Criteria. The result shows that the model is effective to group and measure the level of the risk and can be used as a basis for the decision makers in approving the loan proposal.
Beri Komentar ?#(0) | Bookmark
Properti | Nilai Properti |
---|---|
ID Publisher | gdlhub |
Organisasi | Telkomnika |
Nama Kontak | Herti Yani, S.Kom |
Alamat | Jln. Jenderal Sudirman |
Kota | Jambi |
Daerah | Jambi |
Negara | Indonesia |
Telepon | 0741-35095 |
Fax | 0741-35093 |
E-mail Administrator | elibrarystikom@gmail.com |
E-mail CKO | elibrarystikom@gmail.com |
Print ...
Kontributor...
- , Editor: sukadi
Download...
Download hanya untuk member.
2385-8474-1-PB
File : 2385-8474-1-PB.pdf
(317373 bytes)