Path: Top -> Journal -> Telkomnika -> 2020 -> Vol 18, No 4, August
Rice seed image classification based on HOG descriptor with missing values imputation
Oleh : Huy Nguyen-Quoc, Vinh Truong Hoang, Telkomnika
Dibuat : 2021-01-15, dengan 1 file
Keyword : HOG descriptor; KNN imputation; linear interpolation; missing value imputation; rice seed image classification; zero imputation;
Url : http://journal.uad.ac.id/index.php/TELKOMNIKA/article/view/14069
Sumber pengambilan dokumen : web
Rice is a primary source of food consumed by almost half of world population. Rice quality mainly depends on the purity of the rice seed. In order to ensure the purity of rice variety, the recognition process is an essential stage. In this paper, we firstly propose to use histogram of oriented gradient (HOG) descriptor to characterize rice seed images. Since the size of image is totally random and the features extracted by HOG can not be used directly by classifier due to the different dimensions. We apply several imputation methods to fill the missing data for HOG descriptor. The experiment is applied on the VNRICE benchmark dataset to evaluate the proposed approach.
Beri Komentar ?#(0) | Bookmark
Properti | Nilai Properti |
---|---|
ID Publisher | gdlhub |
Organisasi | Telkomnika |
Nama Kontak | Herti Yani, S.Kom |
Alamat | Jln. Jenderal Sudirman |
Kota | Jambi |
Daerah | Jambi |
Negara | Indonesia |
Telepon | 0741-35095 |
Fax | 0741-35093 |
E-mail Administrator | elibrarystikom@gmail.com |
E-mail CKO | elibrarystikom@gmail.com |
Print ...
Kontributor...
- , Editor: sukadi
Download...
Download hanya untuk member.
14069-43331-1-PB
File : 14069-43331-1-PB.pdf
(679989 bytes)