Path: Top -> Journal -> Jurnal Internasional -> King Saud University -> 2014 -> Volume 26, Issue 4, December

Minimum redundancy and maximum relevance for single and multi-document Arabic text summarization

Journal from gdlhub / 2017-08-16 13:54:40
Oleh : Houda Oufaida, Omar Nouali , Philippe Blache, King Saud University
Dibuat : 2014-12-16, dengan 1 file

Keyword : Arabic text summarization Sentence extraction mRMR Minimum redundancy Maximum relevance
Url : http://www.sciencedirect.com/science/article/pii/S1319157814000329
Sumber pengambilan dokumen : web

Automatic text summarization aims to produce summaries for one or more texts using machine techniques. In this paper, we propose a novel statistical summarization system for Arabic texts. Our system uses a clustering algorithm and an adapted discriminant analysis method: mRMR (minimum redundancy and maximum relevance) to score terms. Through mRMR analysis, terms are ranked according to their discriminant and coverage power. Second, we propose a novel sentence extraction algorithm which selects sentences with top ranked terms and maximum diversity. Our system uses minimal language-dependant processing: sentence splitting, tokenization and root extraction. Experimental results on EASC and TAC 2011 MultiLingual datasets showed that our proposed approach is competitive to the state of the art systems.

Beri Komentar ?#(0) | Bookmark

PropertiNilai Properti
ID Publishergdlhub
OrganisasiKing Saud University
Nama KontakHerti Yani, S.Kom
AlamatJln. Jenderal Sudirman
KotaJambi
DaerahJambi
NegaraIndonesia
Telepon0741-35095
Fax0741-35093
E-mail Administratorelibrarystikom@gmail.com
E-mail CKOelibrarystikom@gmail.com

Print ...

Kontributor...

  • , Editor: sukadi

Download...