Path: Top -> Journal -> Jurnal Internasional -> King Saud University -> 2014 -> Volume 26, Issue 4, December

Arabic web pages clustering and annotation using semantic class features

Journal from gdlhub / 2017-08-16 13:33:07
Oleh : Hanan M. Alghamdi , Ali Selamat, Nor Shahriza Abdul Karim, King Saud University
Dibuat : 2014-12-16, dengan 1 file

Keyword : k-Means Semantic similarity Text clustering Arabic webpage
Url : http://www.sciencedirect.com/science/article/pii/S1319157814000263
Sumber pengambilan dokumen : web

o effectively manage the great amount of data on Arabic web pages and to enable the classification of relevant information are very important research problems. Studies on sentiment text mining have been very limited in the Arabic language because they need to involve deep semantic processing. Therefore, in this paper, we aim to retrieve machine-understandable data with the help of a Web content mining technique to detect covert knowledge within these data. We propose an approach to achieve clustering with semantic similarities. This approach comprises integrating k-means document clustering with semantic feature extraction and document vectorization to group Arabic web pages according to semantic similarities and then show the semantic annotation. The document vectorization helps to transform text documents into a semantic class probability distribution or semantic class density. To reach semantic similarities, the approach extracts the semantic class features and integrates them into the similarity weighting schema. The quality of the clustering result has evaluated the use of the purity and the mean intra-cluster distance (MICD) evaluation measures. We have evaluated the proposed approach on a set of common Arabic news web pages. We have acquired favorable clustering results that are effective in minimizing the MICD, expanding the purity and lowering the runtime.

Beri Komentar ?#(0) | Bookmark

PropertiNilai Properti
ID Publishergdlhub
OrganisasiKing Saud University
Nama KontakHerti Yani, S.Kom
AlamatJln. Jenderal Sudirman
KotaJambi
DaerahJambi
NegaraIndonesia
Telepon0741-35095
Fax0741-35093
E-mail Administratorelibrarystikom@gmail.com
E-mail CKOelibrarystikom@gmail.com

Print ...

Kontributor...

  • , Editor: sukadi

Download...