Path: Top -> Journal -> Telkomnika -> 2018 -> Vol 16, No 6, December 2018
Stochastic Computing Correlation Utilization in Convolutional Neural Network Basic Functions
Oleh : Hamdan Abdellatef, Mohamed Khalil Hani, Nasir Shaikh Husin, Sayed Omid Ayat, Telkomnika
Dibuat : 2019-05-10, dengan 1 file
Keyword : convolutional neural network, stochastic computing, correlation
Url : http://journal.uad.ac.id/index.php/TELKOMNIKA/article/view/8955
Sumber pengambilan dokumen : WEB
In recent years, many applications have been implemented in embedded systems and mobile Internet of Things (IoT) devices that typically have constrained resources, smaller power budget, and exhibit "smartness" or intelligence. To implement computation-intensive and resource-hungry Convolutional Neural Network (CNN) in this class of devices, many research groups have developed specialized parallel accelerators using Graphical Processing Units (GPU), Field-Programmable Gate Arrays (FPGA), or Application-Specific Integrated Circuits (ASIC). An alternative computing paradigm called Stochastic Computing (SC) can implement CNN with low hardware footprint and power consumption. To enable building more efficient SC CNN, this work incorporates the CNN basic functions in SC that exploit correlation, share Random Number Generators (RNG), and is more robust to rounding error. Experimental results show our proposed solution provides significant savings in hardware footprint and increased accuracy for the SC CNN basic functions circuits compared to previous work.
Beri Komentar ?#(0) | Bookmark
Properti | Nilai Properti |
---|---|
ID Publisher | gdlhub |
Organisasi | Telkomnika |
Nama Kontak | Herti Yani, S.Kom |
Alamat | Jln. Jenderal Sudirman |
Kota | Jambi |
Daerah | Jambi |
Negara | Indonesia |
Telepon | 0741-35095 |
Fax | 0741-35093 |
E-mail Administrator | elibrarystikom@gmail.com |
E-mail CKO | elibrarystikom@gmail.com |
Print ...
Kontributor...
- , Editor: sustriani
Download...
Download hanya untuk member.
8955-29577-1-PB
File : 8955-29577-1-PB.pdf
(630878 bytes)