Path: Top -> Journal -> Telkomnika -> 2019 -> Vol 17, No 3, June 2019

Approximated computing for low power neural networks

Journal from gdlhub / 2019-05-17 09:20:14
Oleh : Gian Carlo Cardarilli, Luca Di Nunzio, Rocco Fazzolari, Daniele Giardino, Marco Matta, Mario Patetta, Marco Re, Sergio Spano, Telkomnika
Dibuat : 2019-05-17, dengan 1 file

Keyword : approximated computing, low power machine learning
Url : http://journal.uad.ac.id/index.php/TELKOMNIKA/article/view/12409
Sumber pengambilan dokumen : WEB

This paper investigates about the possibility to reduce power consumption in Neural Network using approximated computing techniques. Authors compare a traditional fixed-point neuron with an approximated neuron composed of approximated multipliers and adder. Experiments show that in the proposed case of study (a wine classifier) the approximated neuron allows to save up to the 43% of the area, a power consumption saving of 35% and an improvement in the maximum clock frequency of 20%.

Beri Komentar ?#(0) | Bookmark

PropertiNilai Properti
ID Publishergdlhub
OrganisasiTelkomnika
Nama KontakHerti Yani, S.Kom
AlamatJln. Jenderal Sudirman
KotaJambi
DaerahJambi
NegaraIndonesia
Telepon0741-35095
Fax0741-35093
E-mail Administratorelibrarystikom@gmail.com
E-mail CKOelibrarystikom@gmail.com

Print ...

Kontributor...

  • , Editor: sustriani

Download...