Path: Top -> Journal -> Jurnal Nasional Teknik Elektro dan Teknologi Informasi -> 2018 -> Vol 7, No 4

Peningkatan Akurasi Pengenalan Emosi pada Sinyal Electroencephalograpy Menggunakan Multiclass Fisher Discriminant Analysis

Journal from gdlhub / 2019-11-15 10:57:50
Oleh : Evi Septiana Pane, Adhi Dharma Wibawa, Mauridhi Hery Purnomo, JNTETI
Dibuat : 2019-05-07, dengan 1 file

Keyword : gelombang otak, reduksi dimensi, EEG, pengenalan emosi multikelas
Url : http://ejnteti.jteti.ugm.ac.id/index.php/JNTETI/article/view/462
Sumber pengambilan dokumen : WEB

EEG signals have a significant correlation to emotions when compared to other external appearances such as face and voice. Due to the low accuracy of emotional recognition through EEG signals, this study proposes a dimensional reduction method for EEG data to address that problem using Multiclass Fisher Discriminant Analysis (MC-FDA). In this study, the experiment was applied on public EEG dataset with three classes of emotions, namely positive, negative, and neutral. Differential entropy features were extracted from the decomposed EEG signals in five frequency band of the delta, theta, alpha, beta, and gamma. The accuracy of emotion recognition was measured using two prevalent classifiers on EEG identification, such as LDA and SVM. To demonstrate the superiority of the MC-FDA method, the PCA dimension reduction method was applied as a comparison. Classification accuracy results from all experiment scenario showed the advantages of the MC-FDA compared to the PCA. The best emotion classification accuracy was obtained from trials on all data from twelve electrodes using the MC-FDA and LDA methods, namely 93.3%. These results show a mean increase in accuracy of 3.5 points from the original feature vector dataset.

Beri Komentar ?#(0) | Bookmark

PropertiNilai Properti
ID Publishergdlhub
OrganisasiJNTETI
Nama KontakHerti Yani, S.Kom
AlamatJln. Jenderal Sudirman
KotaJambi
DaerahJambi
NegaraIndonesia
Telepon0741-35095
Fax0741-35093
E-mail Administratorelibrarystikom@gmail.com
E-mail CKOelibrarystikom@gmail.com

Print ...

Kontributor...

  • , Editor: sustriani

Download...

  • Download hanya untuk member.

    462-786-1-SM
    Download Image
    File : 462-786-1-SM.pdf

    (1624293 bytes)