Path: Top -> Journal -> Kursor -> 2016 -> Vol. 8 No. 4

ONLINE KERNEL AMGLVQ FOR ARRHYTHMIA HEARBEATS CLASSIFICATION

Journal from gdlhub / 2018-06-02 10:12:22
Oleh : Elly Matul Imah, R. Sulaiman, Kursor
Dibuat : 2018-06-02, dengan 1 file

Keyword : KAMGLVQ, SVM, Backpropagation, arrhythmia, ECG, imbalanced data set
Url : http://kursorjournal.org/index.php/kursor/article/view/108
Sumber pengambilan dokumen : WEB

This study proposes Online Kernel Adaptive Multilayer Generalized Learning Vector Quantization (KAMGLVQ) for handling imbalanced data sets. KAMGLVQ is extended version of AMGLVQ that used kernel function to handling non-linear classification problems. Basically AMGLVQ is vector quantization based learning. The vector quantization based learning is very simple algorithm that can be applied to the multiclass problem and the complexity of LVQ can be controlled during training process. KAMGLVQ works at online kernel learning system that integrating feature extraction and classification. The architecture network of KAMGLVQ consists of three layers, input layer, hidden layer, and an output layer. The hidden layer of KAMGLVQ is adaptive; this algorithm will generate a number of hidden layer nodes. The algorithm implement on real ECG signals from the MIT-BIH arrhythmias database and synthetic data. The experiments showed that KAMGLVQ able improve the accuracy of classification better than SVM or back-propagation NN; also able to reduce the time computational cost.

Beri Komentar ?#(0) | Bookmark

PropertiNilai Properti
ID Publishergdlhub
OrganisasiKursor
Nama KontakHerti Yani, S.Kom
AlamatJln. Jenderal Sudirman
KotaJambi
DaerahJambi
NegaraIndonesia
Telepon0741-35095
Fax0741-35093
E-mail Administratorelibrarystikom@gmail.com
E-mail CKOelibrarystikom@gmail.com

Print ...

Kontributor...

  • , Editor: sukadi

Download...