Path: Top -> Journal -> Telkomnika -> 2019 -> Vol 17, No 3, June 2019
Suitability analysis of rice varieties using learning vector quantization and remote sensing images
Oleh : Annisa Apriliani, Retno Kusumaningrum, Sukmawati Nur Endah, Yudo Prasetyo, Telkomnika
Dibuat : 2019-05-17, dengan 1 file
Keyword : BI, learning vector quantization, NDSI, NDVI, NDWI, suitability analysis of rice varieties
Url : http://journal.uad.ac.id/index.php/TELKOMNIKA/article/view/12234
Sumber pengambilan dokumen : WEB
Rice (Oryza Sativa) is the main food for Indonesian people, thus maintaining the stability of rice production in Indonesia becomes an important issue for further study. A strategy to overcome the issue is to apply precision agriculture (PA) using remote sensing images as a reference due to its effectiveness. The initial stage of PA is suitability analysis of rice varieties, including INPARA, INPARI, and INPAGO. While the representative features that can be extracted from remote sensing images and related to agriculture field are NDVI, NDWI, NDSI, and BI. Therefore, the aim of this study is to identify the best model for analyzing the most suitable superior rice varieties using Learning Vector Quantization. The results show that the best LVQ model is obtained at learning rate value of 0.001, epsilon value of 0.1, and the features combination of NDWI and BI values (in standard deviation). The architecture generates accuracy value of 56%.
Beri Komentar ?#(0) | Bookmark
Properti | Nilai Properti |
---|---|
ID Publisher | gdlhub |
Organisasi | Telkomnika |
Nama Kontak | Herti Yani, S.Kom |
Alamat | Jln. Jenderal Sudirman |
Kota | Jambi |
Daerah | Jambi |
Negara | Indonesia |
Telepon | 0741-35095 |
Fax | 0741-35093 |
E-mail Administrator | elibrarystikom@gmail.com |
E-mail CKO | elibrarystikom@gmail.com |
Print ...
Kontributor...
- , Editor: sustriani
Download...
Download hanya untuk member.
12234-32650-1-PB
File : 12234-32650-1-PB.pdf
(702855 bytes)