Path: Top -> Journal -> Jurnal Internasional -> King Saud University -> 2020 -> Volume 32, Issue 6, July

Adaptive elitist-ant system for medical clustering problem

Journal from gdlhub / 2021-08-24 11:54:52
Oleh : Anmar F. Abuhamdah, King Saud University
Dibuat : 2021-08-04, dengan 0 file

Keyword : Medical clustering problem, Minimal distance, Ant colony optimization, Adaptive hybrid elitist-ant system
Url : http://www.sciencedirect.com/science/article/pii/S131915781830257X
Sumber pengambilan dokumen : Web

In general, population based algorithms are superior to local search based algorithms in term of exploration the search space. In any case, the primary downside in different population based algorithms is in exploiting the search space. Recently, a Hybrid Elitist ant system approach is considered as a decent population based algorithm over various optimization problems. Along these lines, the objective of this work is to evaluate the hybrid elitist ant system approach performance to exploit the search space in clustering problem. Six benchmark datasets for medical clustering problem are utilized as a test domain (UCI Machine Learning Repository). Keeping in mind the end goal is to explore the performance of hybrid elitist ant system approach, a comparison performed between the hybrid elitist-ant system and different methodologies in the literature. The result of elitist ant system approach contrasted with different methodologies outcomes exhibits its viability. In any case, the impediment of hybrid elitist ant system approach is in tuning the importance of constraints parameter, where in each dataset needs to tune its own importance for every problem. Subsequently, its props motivate to enhance the hybrid elitist ant system approach by adaptively tuning the importance parameter. Computational outcomes demonstrate that the proposed adaptive elitist ant system approach is competent in delivering higher quality solutions (outcomes) than hybrid elitist ant system approach and different methodologies (outcomes) in the literature in all datasets.

Deskripsi Alternatif :

In general, population based algorithms are superior to local search based algorithms in term of exploration the search space. In any case, the primary downside in different population based algorithms is in exploiting the search space. Recently, a Hybrid Elitist ant system approach is considered as a decent population based algorithm over various optimization problems. Along these lines, the objective of this work is to evaluate the hybrid elitist ant system approach performance to exploit the search space in clustering problem. Six benchmark datasets for medical clustering problem are utilized as a test domain (UCI Machine Learning Repository). Keeping in mind the end goal is to explore the performance of hybrid elitist ant system approach, a comparison performed between the hybrid elitist-ant system and different methodologies in the literature. The result of elitist ant system approach contrasted with different methodologies outcomes exhibits its viability. In any case, the impediment of hybrid elitist ant system approach is in tuning the importance of constraints parameter, where in each dataset needs to tune its own importance for every problem. Subsequently, its props motivate to enhance the hybrid elitist ant system approach by adaptively tuning the importance parameter. Computational outcomes demonstrate that the proposed adaptive elitist ant system approach is competent in delivering higher quality solutions (outcomes) than hybrid elitist ant system approach and different methodologies (outcomes) in the literature in all datasets.

Beri Komentar ?#(0) | Bookmark

PropertiNilai Properti
ID Publishergdlhub
OrganisasiKing Saud University
Nama KontakHerti Yani, S.Kom
AlamatJln. Jenderal Sudirman
KotaJambi
DaerahJambi
NegaraIndonesia
Telepon0741-35095
Fax0741-35093
E-mail Administratorelibrarystikom@gmail.com
E-mail CKOelibrarystikom@gmail.com

Print ...

Kontributor...

  • Editor: Calvin