Path: Top -> Journal -> Telkomnika -> 2021 -> Vol 19, No 3, June

Deep fingerprint classification network

Journal from gdlhub / 2021-09-06 17:24:23
Oleh : Abdulsattar M. Ibrahim, Abdulrahman K. Eesee, Raid Rafi Omar Al-Nima, Telkomnika
Dibuat : 2021-09-06, dengan 0 file

Keyword : classification, deep learning, fingerprint
Url : http://journal.uad.ac.id/index.php/TELKOMNIKA/article/view/18771
Sumber pengambilan dokumen : Web

Fingerprint is one of the most well-known biometrics that has been used for personal recognition. However, faked fingerprints have become the major enemy where they threat the security of this biometric. This paper proposes an efficient deep fingerprint classification network (DFCN) model to achieve accurate performances of classifying between real and fake fingerprints. This model has extensively evaluated or examined parameters. Total of 512 images from the ATVS-FFp_DB dataset are employed. The proposed DFCN achieved high classification performance of 99.22%, where fingerprint images are successfully classified into their two categories. Moreover, comparisons with state-of-art approaches are provided.

Deskripsi Alternatif :

Fingerprint is one of the most well-known biometrics that has been used for personal recognition. However, faked fingerprints have become the major enemy where they threat the security of this biometric. This paper proposes an efficient deep fingerprint classification network (DFCN) model to achieve accurate performances of classifying between real and fake fingerprints. This model has extensively evaluated or examined parameters. Total of 512 images from the ATVS-FFp_DB dataset are employed. The proposed DFCN achieved high classification performance of 99.22%, where fingerprint images are successfully classified into their two categories. Moreover, comparisons with state-of-art approaches are provided.

Beri Komentar ?#(0) | Bookmark

PropertiNilai Properti
ID Publishergdlhub
OrganisasiTelkomnika
Nama KontakHerti Yani, S.Kom
AlamatJln. Jenderal Sudirman
KotaJambi
DaerahJambi
NegaraIndonesia
Telepon0741-35095
Fax0741-35093
E-mail Administratorelibrarystikom@gmail.com
E-mail CKOelibrarystikom@gmail.com

Print ...

Kontributor...

  • Editor: Calvin